Sample Space

Problem of the Day: A family has two kids, one of them is a girl. What is the probability that both kids are girls?
$>$ To solve the problem, we need to have a statistical model.

* Statistical model is a set of assumptions
$>$ A1: For each kid, $\operatorname{Pr}(B)=\operatorname{Pr}(G)=0.5$
$>$ A2: The gender of the two kids are independent
* Sample Space is the list of elementary events with their probability of occurrence.

* Interpretation of the Problem

1) Suppose I have no additional information about the family. Then we have 4 elementary events, each with the same probability $1 / 4$.

Since my information is that at least one kid is a girl, this rules out the event (B, B). Thus, the sample space becomes $\{(\mathrm{G}, \mathrm{G}),(\mathrm{G}, \mathrm{B}),(\mathrm{B}, \mathrm{G})\}$, in which each element has the same probability $1 / 3$.

Therefore, the answer under Interpretation 1 is $1 / 3$.
2) Suppose, in addition to the information given, I have also met a girl from this family. Now the experiment is simply about the other kid whom I have never met. In this case, the sample space is $\{B, G\}$, and each element has the same probability $1 / 2$.

Therefore, the answer under Interpretation 2 is $1 / 2$. The fact that I have met a girl in this family increases the probability of the family having two girls from $1 / 3$ to $1 / 2$.
> Conclusion: Always make explicit the following:

- The statistical experiment
- The sample space $\Omega=\left\{\omega_{1}, \ldots, \omega_{N}\right\}$ where ω_{n} 's are elementary events and their probabilities
- The statistical model
* If possible, we should define the elementary events so that the statistical model leads to think that all elementary events have the same probability.
$>$ If the sample space is FINITE,

$$
P(A)=\frac{\text { number of elementary events in } A}{\text { number of elements in } \Omega}=\frac{\# A}{\# \Omega}
$$

where A is an event not necessarily elementary, i.e. A is a list of elementary events.

- In this case, $P(A)$ is the uniform probability on Ω,

$$
\begin{aligned}
P: \mathcal{P}(\Omega) & \rightarrow[0,1] \\
A & \mapsto \frac{\# A}{\# \Omega}
\end{aligned}
$$

Algebras and σ-Algebras of Events

Problem: I throw a piece of chalk on the blackboard. What is the probability for the chalk to hit below the given curve?

$>$ Sample space: $\Omega=$ \{all the points on the blackboard $\}$
$>$ Statistical model

- Assume that all the points on the blackboard have the same probability of being hit. Then, $\forall \omega \in \Omega: P(\{\omega\})=\epsilon \Rightarrow \epsilon=0$. That is, if we ask about the probability of a single point being hit, the answer is going to be zero. Therefore, we need to resort to a different measure of probability-expressed as the area under a curve.

In the cases of constant and step-functions, the probability of the chalk hitting inside A is $P(A)=\frac{\text { area of } A}{\text { area of } \Omega}$. We can extend this idea to any function $f(x)$.

- To find the probability of an event in general, given a function $f(x)$.
- Define the event A as

$$
A:=\{\omega=(x, y) \in \Omega: y \leq f(x)\}
$$

- Define the events A_{n} as

$$
A_{n}:=\left\{\omega=(x, y) \in \Omega: y \leq f_{n}(x)\right\}
$$

where

$$
\begin{aligned}
& f_{n}(x):=\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} \mathbf{1}_{\left\{\frac{k}{2^{n}} \leq f(x)<\frac{k+1}{2^{n}}\right\}}, \quad \forall n \in \mathbb{N} \\
& \mathbf{1}_{\left\{\frac{k}{2^{n}} \leq f(x)<\frac{k+1}{2^{n}}\right\}}= \begin{cases}1 & \frac{k}{2^{n}} \leq f(x)<\frac{k+1}{2^{n}} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

- $f_{n}(x) \leq f_{n+1}(x)$ for all x and all n
- $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$

Algebras and σ-Algebras (Cont'd)

* Recap.

Let $A=\{\omega=(x, y) \in \Omega: y \leq f(x)\}$
Let $A_{n}=\left\{\omega=(x, y) \in \Omega: y \leq f_{n}(x)\right\}$ and $f_{n}(x)=f_{n}(x):=\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} \mathbf{1}_{\left\{\frac{k}{2^{n}} \leq f(x)<\frac{k+1}{2^{n}}\right\}}$
We can show

1) $\forall n \in \mathbb{N}, \forall x \in \mathbb{R}: f_{n}(x) \leq f_{n+1}(x)$
2) f_{n} is increasing implies that f_{n} has a limit. Thus, $\lim _{n \rightarrow \infty} f_{n} \rightarrow f$ for all x.

As a result of (1) and (2), $A_{n}=\left\{(x, y): y \leq f_{n}(x)\right\}$ is such that $A_{n} \subset A_{n+1}$, i.e. A_{n} is increasing. Therefore, $\cup_{n} A_{n}=A$, and we can say

$$
P(A)=\lim P\left(A_{n}\right)
$$

We can define $P(A)$ for any set $A=\{(x, y): y \leq f(x)\}$ such that

$$
\lim P\left(A_{n}\right)=\lim \int_{a}^{b} f_{n}(x) d x \equiv \int_{a}^{b} f(x) d x
$$

More generally, whenever, f is Riemann integrable, we can get $P(A)$ by using the step-wise approximation.
$>$ Conclusion: For any sample Ω, the events A for which I can define $P(A)$ are the subsets of Ω including at least

- Ω itself (by definition, $P(\Omega)=1$)
- If $P(A)$ exists, then $P(\bar{A})=1-P(\bar{A})$
- If A and B are included, then $A \cap B$ is included, and also $A \cup B$
- If A_{n} is included in A_{n+1}, and all the A_{n} 's are such that $P\left(A_{n}\right)$ exist, then $\cup_{n} A_{n}$ has to be included.
* Definition. Let Ω be the sample space. An algebra \mathcal{A} of events of events of Ω is a family of subsets of Ω (i.e. $\mathcal{A} \subset \mathcal{P}(\Omega)$) such that

1) $\Omega \in \mathcal{A}$
2) $A \in \mathcal{A} \Rightarrow A^{c} \in \mathcal{A}$
3) $A, B \in \mathcal{A} \Rightarrow(A \cap B) \in \mathcal{A}$
\mathcal{A} is a $\boldsymbol{\sigma}$-algebra (or $\boldsymbol{\sigma}$-field) if in addition, we have
4) $A_{n} \in \mathcal{A}, \forall n \in \mathbb{N}: A_{n} \subset A_{n+1} \Rightarrow \bigcup_{n} A_{n} \in \mathcal{A}$
$>$ Remark. If \mathcal{A} is an algebra, $\forall A_{1}, \ldots, A_{N}$ finite collection of sets such that $A_{i} \in \mathcal{A}$, $i=1, \ldots, N$, then $\bigcup_{i=1}^{N} A_{i} \in \mathcal{A}$, and $\bigcap_{i=1}^{N} A_{i} \in \mathcal{A}$

- Note. By the De Morgan's Law, $A \cup B=\overline{(\bar{A} \cap \bar{B})}$.
$>$ Remark. If Ω is finite and $\mathcal{A} \subseteq \mathcal{P}(\Omega)$, then \mathcal{A} algebra $\Leftrightarrow \sigma$-algebra
- Note. If Ω is infinite, then σ-algebra $\Rightarrow \mathcal{A}$ algebra (but not reverse, see e.g. on P.11)
* Theorem. If Ω is countable and \mathcal{A} is a σ-algebra of Ω such that $\forall \omega \in \mathcal{A}:\{\omega\} \in \mathcal{A}$, then $\mathcal{A}=\mathcal{P}(\Omega)$
$>$ Proof. We will demonstrate the equality by showing $\mathcal{A} \subseteq \mathcal{P}(\Omega)$ and $\mathcal{P}(\Omega) \subseteq \mathcal{A}$.
First, by the definition of a σ-algebra, $\mathcal{A} \subseteq \mathcal{P}(\Omega)$.

Next, to show that $\mathcal{P}(\Omega) \subseteq \mathcal{A}$, we need to show that $\forall B: B \in \mathcal{P}(\Omega) \Rightarrow B \in \mathcal{A}$. Since Ω is countable, we can describe its elements as

$$
\Omega=\left\{\omega_{1}, \ldots, \omega_{n}, \ldots\right\}
$$

Consider the following sets A_{n} defined for $n \in \mathbb{N}$ as $A_{n}=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. It is easy to show that $A_{n} \in \mathcal{A}$ and $A_{n} \subseteq A_{n+1}$ (e.g. by recurrence: $A_{n+1}=A_{n} \cup\left\{\omega_{n+1}\right\}$).
Now consider any set $B \in \mathcal{P}(\Omega)$, we can always rewrite B as

$$
\begin{aligned}
B & =B \cap \Omega \\
& =B \cap \bigcup_{n=1}^{\infty} A_{n} \\
& =B \cap \lim _{n \rightarrow \infty} \bigcup_{k=1}^{n} A_{k} \\
& =B \cap \lim _{n \rightarrow \infty} A_{n} \\
& =\lim _{n \rightarrow \infty}\left(B \cap A_{n}\right) \\
& \in \mathcal{A}
\end{aligned}
$$

Probability Measure

* Definition. Let (Ω, \mathcal{A}) be a measurable space, where Ω is the sample space and \mathcal{A} is a σ algebra.
$>\mu$ is a measure on (Ω, \mathcal{A}) if and only if

$$
\begin{aligned}
\mu: \mathcal{A} & \rightarrow \overline{\mathbb{R}}_{+} \\
A & \mapsto \mu(A)
\end{aligned}
$$

is such that

$$
\text { 1) } \mu(\varnothing)=0
$$

2) $\mu\left(\cup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mu\left(A_{i}\right)$
where $\left(A_{i}\right)$ are pair-wise disjoint sets with $A_{i} \in \mathcal{A}$ for all $i \in \mathbb{N}$.
$>P$ is a probability measure if and only if

- $\quad P$ is a measure
- $P(\Omega)=1$

Therefore,

$$
\begin{aligned}
P: \mathcal{A} & \rightarrow[0,1] \\
A & \mapsto P(A)
\end{aligned}
$$

$>$ Remark. If $A, B \in \mathcal{A}: A \cap B=\emptyset$, then $\mu(A \cup B)=\mu(A)+\mu(B)$.

- Consider countable collection $A, B, \emptyset, \ldots, \emptyset$, use (2) and (1)
$>$ Remark. If $A, B \in \mathcal{A}: A \subseteq B$, then $\mu(A) \leq \mu(B)$
$>$ Remark. Consider the measure space $(\Omega, \mathcal{A}, \mu)$, and $B \in \mathcal{A}: 0<\mu(B)<\infty$. The associated probability measure on $(B, \mathcal{A} \cap B)$ is defined as

$$
\forall S \in \mathcal{A} \cap B: P(S)=\frac{\mu(S)}{\mu(B)}
$$

- Note. $(\mathcal{A} \cap B)=\{S=(A \cap B): \forall A \in \mathcal{A}\} \quad(\subseteq \mathcal{P}(B)$?)

* Uniform Probability Measure

$>\Omega$ is finite:

$$
P(\{\omega\})=\frac{1}{\# \Omega}, \quad \forall \omega \in \Omega
$$

$>\Omega$ is infinite (and not countable), e.g. $\Omega=\mathbb{R}^{2}$. I can define the Lebesgue Measure on \mathbb{R}^{2}, which is

$$
\mu(A)=\text { Area of } A, \quad \forall A \in \mathcal{A}=\mathcal{P}\left(\mathbb{R}^{2}\right)
$$

$>$ Consider $B \subset \Omega=\mathbb{R}^{2}$ (think of B as the blackboard), with $0<\mu(B)<\infty$.
From the Lebesgue measure (area of \mathbb{R}^{2}) on \mathbb{R}^{2}, I can define uniform probability measure P on $B \cap \mathcal{A}=\{B \cap \mathcal{A}: A \in \mathcal{A}\}$ as

$$
P(S)=\frac{\mu(S)}{\mu(B)}, \quad \forall S \in(B \cap \mathcal{A})
$$

* Empirical Probability Measure

$>$ Assume we have a statistical experiment with draws $\omega \in \Omega$.
$>$ After n repetitions of the experiment, we have $\left(\omega_{1}, \ldots, \omega_{n}\right)$. The sampling frequency of A is given by

$$
\forall A \in \mathcal{A}: f_{n}(A)=\frac{1}{n} \sum_{i=1}^{n} \mathbf{1}_{\left\{\omega_{i} \in A\right\}}\left(\omega_{i}\right)
$$

- E.g. A could be "rolling a dice and get 3 " or "rolling a dice and get $3,4,5$ "
- We can show that f_{n} is a probability measure.

> Law of Large Numbers (LLN)

- Remark. We want to understand the connection between $f_{n}(A)$ and $P(A)$, where the latter is the population ("genuine") probability of event A.
- E.g. Toss a coin

If I repeat my experiment n times

$$
f_{n}(\text { Head })=\frac{\# \text { of Head observations }}{n}
$$

Sample space:

$$
\Omega=\left\{\left(\omega_{i}\right)_{1 \leq i \leq n}: \omega_{i} \in\{H, T\}\right\}
$$

under the assumption that

1) Tosses are independent
2) $P(H)=1 / 2$

$$
P\left(\left\{\left(\omega_{i}\right)_{1 \leq i \leq n}\right\}\right)=\frac{1}{2^{n}}, \quad \forall\left(\omega_{i}\right)_{1 \leq i \leq n} \in \Omega^{(n)}
$$

- Strictly speaking, it is possible to only get heads with probability $1 / 2^{n}$. In this case, $f_{n}(H)=1$, which does not converge to $P(H)=1 / 2$. However,

$$
P\left(\left\{f_{n}(H)=1\right\}\right)=\frac{1}{2^{n}} \rightarrow 0
$$

Here, we need to understand the meaning of $f_{n}(H)$ converges to $P(H)$ with probability approaching 1.

Definition. Monotone sequence

$>$ A sequence $A_{1} \subseteq A_{2} \subseteq \cdots \subseteq A_{n} \subseteq \cdots$ is called an increasing sequence with limit:

$$
\lim _{n} A_{n}=\bigcup_{n=1}^{\infty} A_{n}=\lim _{n} \uparrow A_{n}
$$

$>$ A sequence $A_{1} \supseteq \cdots \supseteq A_{n} \supseteq \cdots$ is decreasing with limit:

$$
\lim _{n} A_{n}=\bigcap_{n=1}^{\infty} A_{n}=\lim _{n} \downarrow A_{n}
$$

$>$ A monotone class is a class that contains the limits of all its increasing and decreasing sequences.

- A σ-algebra is a monotone class (this is true by the last theorem in homework 1).
- A class is a collection of sets.
* Theorem. Monotone Continuity of Probability Measure
$>$ Consider a probability measure P on (Ω, \mathcal{A}) where \mathcal{A} is a σ-algebra
$>$ Suppose $\left(A_{n}\right)_{n} \subseteq \mathcal{A}$ is an increasing (and countable) sequence in \mathcal{A}, and $\left(B_{n}\right)_{n} \subseteq \mathcal{A}$ a decreasing (countable) sequence in \mathcal{A}. Then,

1) $P\left(\lim \uparrow A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$
2) $P\left(\lim \downarrow B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)$

Monotone Continuity Theorem (cont'd)

* Theorem. Monotone Continuity of Probability Measure.
$>$ Consider a probability measure P on (Ω, \mathcal{A}) where \mathcal{A} is a σ-algebra
$>\operatorname{Suppose}\left(A_{n}\right)_{n} \in \mathcal{A}$ is an increasing (and countable) sequence in \mathcal{A}, and $\left(B_{n}\right)_{n} \in \mathcal{A}$ a decreasing (countable) sequence in \mathcal{A}. Then,

1) $P\left(\lim \uparrow A_{n}\right)=\lim _{n \rightarrow \infty} P\left(A_{n}\right)$
2) $P\left(\lim \downarrow B_{n}\right)=\lim _{n \rightarrow \infty} P\left(B_{n}\right)$

Proof. We can define a sequence of disjoint sets (C_{n}) such that

$$
\begin{aligned}
C_{n+1} & =A_{n+1} \backslash A_{n}, \quad \forall n \in \mathbb{N} \\
C_{1} & =A_{1}
\end{aligned}
$$

- Note. $\cup_{k=1}^{n} C_{k}=\cup_{k=1}^{n} A_{k}=A_{n}$. (We can justify this claim by induction.)

$$
\begin{aligned}
P\left(\lim \uparrow A_{n}\right) & =P\left(\bigcup_{n=1}^{\infty} A_{n}\right) \\
& =P\left(\bigcup_{n=1}^{\infty}\left(A_{n+1} \backslash A_{n}\right)\right) \\
& =\sum_{n=1}^{\infty} P\left(A_{n+1} \backslash A_{n}\right) \\
& =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} P\left(A_{k+1} \backslash A_{k}\right) \\
& =\lim _{n \rightarrow \infty} P\left(\bigcup_{k=1}^{n}\left(A_{k-1} \backslash A_{k}\right)\right) \\
& =\lim _{n \rightarrow \infty} P\left(A_{n}\right)
\end{aligned}
$$

* Definition. Limit Superior and Limit Inferior:

$$
\limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n=1}^{\infty} \bigcup_{m \geq n} A_{m}
$$

- A_{n} occurs infinitely many times.

$$
\liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n=1}^{\infty} \bigcap_{m \geq n} A_{m}
$$

- A_{n} occurs eventually.
$>(\Omega, \mathcal{A})$ a σ-algebra, $\left(A_{n}\right) \in \mathcal{A}, \omega \in \Omega$. What does it mean to say $\omega \in\left(\lim \sup A_{n}\right)$??

$$
\omega \in\left(\limsup _{n \rightarrow \infty} A_{n}\right) \Leftrightarrow \forall n \in \mathbb{N}, \exists m \geq n: \omega \in A_{m}
$$

$>$ Similarly,

$$
\omega \in\left(\liminf _{n \rightarrow \infty} A_{n}\right) \Leftrightarrow \exists n \in \mathbb{N}, \forall m \geq n: \omega \in A_{m}
$$

$>$ Reference: http://en.wikipedia.org/wiki/Limit superior_and_limit_inferior\#Special_case:_discrete_ metric

* $\left\{f_{n}(A) \rightarrow P(A)\right\}$ is an event because it is in the sample space $\Omega^{(\infty)}$ with

$$
\Omega^{(\infty)}=\left\{\left(\omega_{i}\right)_{i \in \mathbb{N}}: \omega_{i} \in\{H, T\} \forall i \in \mathbb{N}\right\}
$$

$>\left\{f_{n}(A) \rightarrow P(A)\right\}$ is the set containing all the f_{n} 's that converge to $P(A)$, i.e. $1 / 2$.

$$
\begin{aligned}
\bar{\omega} \in\left\{f_{n}(A) \rightarrow P(A)\right\} & \Leftrightarrow f_{n}(A)_{(\bar{\omega})} \xrightarrow{n \rightarrow \infty} P(A) \\
& \Leftrightarrow \forall \epsilon>0, \exists q \in \mathbb{N}, \forall n \geq q:\left|f_{n}(A)_{(\bar{\omega})}-P(A)\right| \leq \epsilon \\
& \Rightarrow \forall k \in \mathbb{N}, \exists q \in \mathbb{N}, \forall n \geq q:\left|f_{n}(A)_{(\bar{\omega})}-P(A)\right| \leq \frac{1}{k} \\
& \Leftrightarrow \bar{\omega} \in \bigcap_{k=1}^{\infty} \bigcup_{q=1}^{\infty} \left\lvert\, \bigcap_{n \geq q}\left\{\left|f_{n}(A)_{(\bar{\omega})}-P(A)\right| \leq \frac{1}{k}\right\}\right.
\end{aligned}
$$

$>$ Note. Union corresponds to existential quantifier, and intersection to universal quantifier:

$$
\begin{gathered}
\cup \leftrightarrow \exists, \quad \text { and, } \cap \leftrightarrow \forall . \\
P\left(f_{n}(A) \rightarrow P(A)\right)= \\
\lim _{k \rightarrow \infty} \downarrow \lim _{q \rightarrow \infty} \uparrow P\left(\bigcap_{n \geq q}\left\{\left|f_{n}(A)-P(A)\right| \leq \frac{1}{k}\right\}\right) \\
= \\
\lim _{k \rightarrow \infty} \downarrow \lim _{q \rightarrow \infty} \uparrow P\left(\sup _{n \geq q}\left|f_{n}(A)-P(A)\right| \leq \frac{1}{k}\right)
\end{gathered}
$$

> Recall:

$$
f_{n}(A)_{(\omega)}=\frac{1}{n} \sum_{k=1}^{n} \mathbf{1}_{\left\{\omega_{k} \in A\right\}}
$$

with $\omega_{i} \in\{H, T\}, A=$ getting H

$$
\Omega^{(n)}=\left\{\left(\omega_{i}\right)_{1 \leq i \leq n}: \omega_{i} \in\{H<T\}\right\}
$$

* Definition. Almost Surely Convergence and Probability Convergence

$$
\begin{gathered}
f_{n}(A) \xrightarrow{\text { a.s. }} P(A) \Leftrightarrow \forall \epsilon>0: P\left(\sup _{q \geq n}\left|f_{q}(A)-P(A)\right|>\epsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \\
f_{n}(A) \xrightarrow{p} P(A) \Leftrightarrow \forall \epsilon>0: P\left(\left|f_{n}(A)-P(A)\right|>\epsilon\right) \underset{n \rightarrow \infty}{\longrightarrow} 0
\end{gathered}
$$

Convergence

* Recall the two definitions
$>$ Convergence in probability

$$
\begin{aligned}
f_{n}(A) \xrightarrow{p} P(A) & \Leftrightarrow \forall \epsilon>0: P\left(\left\{\left|f_{n}(A)-P(A)\right|>\epsilon\right\}\right) \xrightarrow[n \rightarrow \infty]{\longrightarrow} 0 \\
& \Leftrightarrow \forall \epsilon>0: P\left(\left\{\left|f_{n}(A)-P(A)\right| \leq \epsilon\right\}\right) \xrightarrow[n \rightarrow \infty]{ } 1
\end{aligned}
$$

$>$ Convergence almost sure

$$
\begin{aligned}
f_{n}(A) \xrightarrow{\text { a.s. }} P(A) & \Leftrightarrow \forall \epsilon>0: P\left(\left\{\sup _{q \geq n}\left|f_{q}(A)-P(A)\right|>\epsilon\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 0 \\
& \Leftrightarrow \forall \epsilon>0: P\left(\left\{\sup _{q \geq n}\left|f_{q}(A)-P(A)\right| \leq \epsilon\right\}\right) \underset{n \rightarrow \infty}{\longrightarrow} 1
\end{aligned}
$$

$>$ Note. $f_{n}(A) \xrightarrow{\text { a.s. }} P(A) \Rightarrow f_{n}(A) \xrightarrow{p} P(A)$

- In general, however, the reverse does not hold. Consider

$$
\begin{aligned}
P\left(\left\{\sup _{q \geq n}\left(\left|f_{q}(A)-P(A)\right|>\epsilon\right\}\right)\right. & =P\left(\bigcup_{q \geq n}\left\{\left|f_{q}(A)-P(A)\right|>\epsilon\right\}\right) \\
& \leq \sum_{q \geq n} P\left(\left\{\left|f_{q}(A)-P(A)\right|>\epsilon\right\}\right)
\end{aligned}
$$

- Convergence almost sure is the Strong LLN
- This is the stochastic analog of "pointwise convergence".
- Convergence in probability is the Weak LLN
- Continuous Mapping Theorem. For every continuous function g, if $x_{n} \xrightarrow{p} x$, then $g\left(x_{n}\right) \xrightarrow{p} g(x)$.

Quality Control and Sampling with / without Replacement

* Sampling with / without Replacement
$>$ Population of N individuals
$>$ Draw n individuals among N
* $1^{\text {st }}$ experiment (with replacement):
$>$ Draw 1 individual from the population (this is \#1). Put it back
$>$ Draw 1 individual from the population (this is \#2). Put it back
$>$...
$>$ Sample space

$$
\Omega=\left\{\omega=\left(\omega_{1}, \ldots, \omega_{n}\right): \omega_{i} \in \text { population }\right\}
$$

where $\# \Omega=N^{n}$

- Assuming independent draws, then

$$
P(\{\omega\})=\frac{1}{N^{n}}
$$

* $2^{\text {nd }}$ experiment (without replacement):
$>$ Draw 1 individual from the population
- This is \#1
$>$ Draw 1 individual from the remaining population
- This is \#2
$>\ldots$
$>$ Sample space:

$$
\Omega^{*}=\left\{\omega=\left(\omega_{1}, \ldots, \omega_{n}\right): \omega_{i} \in \text { population } \wedge \omega_{i} \neq \omega_{j} \text { for } i \neq j\right\}
$$

where $\Omega^{*} \subset \Omega$ with

$$
\# \Omega^{*}=N(N-1)(N-2) \cdots
$$

* The two experiments / models are compatible.
P defined on $\Omega \Rightarrow P$ defined on $\left(\Omega^{*}, \sigma\left(\Omega^{*}\right)\right)$
We can move from the $1^{\text {st }}$ experiment to the $2^{\text {nd }}$ experiment by precluding repetition
$>$ Probability of having no repetition
$=$ probability of Ω^{*} within $(\Omega, \sigma(\Omega), P)$
$=\frac{\# \Omega^{*}}{\# \Omega}=\frac{(N)_{n}}{N^{n}}$
$>$ In both experiments, order matters.
$>$ Intuition 1. When n is sufficiently smaller than N.
- Then the probability of no repetition is really large \sim almost 1

$$
(N)_{n}=N(N-1) \ldots \underbrace{(N-n+1)}_{\sim N} \sim N^{n}
$$

- Application: for survey polls, N is usually quite large compared to n; so we can do calculations with repetitions.
$>$ Intuition 2. When n is sufficiently close to N (extreme case: $n=N$)

N	1	2	3	4	5	6	7
Probability of no	1	0.5	0.222	0.094	0.038	0.015	$(99.4 \%$ chance of having a
repetition $\left((N)_{N} / N^{N}\right)$							
repetition! $)$							

- Note. $(N)_{N}=N$!
- The number of ways to choose an ordered sequence (without repetition) of all individuals.
$=$ number of permutations of the set of individuals
- More generally

$$
(N)_{n}=\frac{N!}{(N-n)!}
$$

- $(N)_{n}$ is the number of ordered (or arranged) samples of size n without repetitions in a population of size N.
- Of course, several of these ordered samples share the exact same individuals but ordered in a different way (there are n ! ways of permuting n individuals)
- The number of subsets of n individual in a population of size N without repetition is given by the Binomial coefficient:

$$
\frac{(N)_{n}}{n!}=\frac{N!}{(N-n)!n!}
$$

- Permutation (order matters)

$$
(N)_{n}=\frac{N!}{(N-n)!}
$$

- Combination (order does not matter)

$$
\binom{N}{n}=\frac{N!}{(N-n)!n!}
$$

* Quality Control without Replacement in Sampling
$>N$ light bulbs with R deficient ones
- Note. R is not random.
$>$ Minimum quality standard: No more than K among N are allowed to be deficient.
- But it's too expensive to check the N light bulbs. So select randomly n light bulbs among N, observe k deficient ones.
$>$ Question: Given N, K, n, k, what values are likely for R ? (want R to be smaller than K)
- We want to assess: P (observed k) and realize it depends on R (if R is large, then the probability of observing a large k is high, and vice versa).
- Conversely: we have observed k. It makes more likely the value of R for which

$$
P(\text { observed } k)=\text { large }
$$

- Given $R, f: k \rightarrow P_{R}$ (observed k)
- Note. Probability function indexed by R.
- Given $k, g: R \rightarrow P_{R}$ (observed k)
- Note. This is the likelihood function.
> Sample Space
- $1^{\text {st }}$ choice: $\Omega=\{0,1,2, \ldots, n\}$
- However, this sample space is not convenient! Because the probabilities of the elementary events are not equal, i.e. probability distribution is not uniform.
- $2^{\text {nd }}$ choice: $\Omega=$ the $(N)_{n}$ ordered samples that can be drawn without replacement.
- For this sample space, we can define a uniform probability distribution.

$$
\begin{aligned}
P_{R}(\underbrace{k \text { deficient bulbs }}_{\text {elementary event } A})= & \frac{\# A}{\# \Omega} \\
= & \underbrace{\frac{(R)_{k}(N-R)_{n-k}}{(N)_{n}}}_{\begin{array}{c}
\text { probability of getting } k \text { deficient bulbs } \\
\text { from a sample of size } n \text { in an ordered way }
\end{array}} \times \underbrace{\binom{n}{k}}_{\begin{array}{c}
\text { number of ways to order } \\
\text { the } k \text { defective bulbs }
\end{array}} \\
= & \frac{\binom{N-R}{k-k}}{\binom{N}{n}}
\end{aligned}
$$

- $3^{\text {rd }}$ choice: $\Omega=$ the $\binom{N}{n}$ subsets
- Uniform probability is induced from uniform probability with ordered samples.

$$
P(k \text { deficient bulbs })=\frac{\# A}{\# \Omega}=c
$$

- This is the most appropriate sample space for the question.
$>$ Remark. We end up with a probability that is not uniform on $\{1,2, \ldots, n\}$

$$
P(\{k\})=\frac{\binom{R}{k}\binom{N-R}{n-k}}{\binom{N}{n}}, \quad \text { if }\left\{\begin{array}{l}
n-(N-R) \leq k \\
k \leq R
\end{array}\right.
$$

- This characterizes any event $A \subset \mathcal{P}(\Omega)$
- This is the hypergeometric distribution, $H(N, R, n)$

Quality Control (cont'd)

* Recap
$>$ Population: N
$>$ Defective light bulbs: R
$>$ Quality control: $R \leq K$
- Sample n with defect k
$>$ Case 1. Draw without replacement
- $\Omega=(N)_{n}$ arranged samples

$$
P(\{k\})=\frac{\binom{R}{k}\binom{N-R}{n-k}}{\binom{N}{n}} \rightarrow \Omega^{*}=\binom{N}{n}
$$

Each sample in Ω^{*} corresponds to exactly $n!$ arranged sample in Ω.

- $\quad P(\{k\})$ means the probability of getting k defective bulbs in a set of n bulbs.
$>$ Case 2. Draw with replacement
- $\Omega=N^{n}$ samples that are arranged.

$$
\begin{aligned}
P(\{k\}) & =\frac{R^{k}(N-R)^{n-k}\binom{n}{k}}{N^{n}} \\
& =\frac{R^{k}(N-R)^{n-k}}{N^{k} N^{n-k}}\binom{n}{k} \\
& =\left(\frac{R}{N}\right)^{k}\left(1-\frac{R}{N}\right)^{n-k}\binom{n}{k} \\
& =p^{k}(1-p)^{n-k}\binom{n}{k}
\end{aligned}
$$

- $\quad p=R / N$ is the population probability of picking a defective light bulb.
- I have defined the Binomial probability distribution $B(n, p)$.
- Remark. If I consider Ω^{*} sample where the arrangement does not matter (with replacement).
There is no way we can define a uniform probability from Ω to Ω^{*}.
- E.g. $n=2$, and $\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{N}\right\}$

$$
\begin{array}{ccc}
\Omega & & \Omega^{*} \\
\left(\omega_{1}, \omega_{1}\right) & \leftrightarrow & \left(\omega_{1}, \omega_{1}\right) \\
\left(\omega_{1}, \omega_{2}\right) & \rightarrow & \left(\omega_{1}, \omega_{2}\right) \\
\left(\omega_{2}, \omega_{1}\right) & \nearrow & \left(\omega_{2}, \omega_{2}\right) \\
\vdots & & \vdots
\end{array}
$$

- $P(\{k\})=p^{k}(1-p)^{n-k}\binom{n}{k}$ gives the probability of success (picking a defective bulb) in one draw.
- $\quad p^{k}(1-p)^{n-k}$ is the probability of picking a sequence with k sucessses, exactly.
- There are $\binom{n}{k}$ such sequences
- Suppose we know p and n. What is the most probable value for k ? In other words, what is the mode?

- For $k \geq 1$

$$
\begin{gathered}
\frac{P(\{k\})}{P(\{k-1\})}=\frac{\binom{n}{k} p^{k}(1-p)^{n-k}}{\binom{n}{k-1} p^{k-1}(1-p)^{n-k+1}}=\frac{n-k+1}{k} \cdot \frac{p}{1-p} \\
\frac{P(\{k\})}{P(\{k-1\})}>1 \Leftrightarrow \frac{n-k+1}{k} \cdot \frac{p}{1-p}>1 \Leftrightarrow(n+1) p>k
\end{gathered}
$$

- 2 Cases:
- If $(n+1) p$ is integer, then I have 2 modes: $(n+1) p$ and $(n+1) p-1$
- $(n+1) p \in \mathbb{Z} \Rightarrow \exists k: k=(n+1) p$
- If $(n+1) p$ is not an integer, then I have $\underline{1 \text { mode: largest integer below }(n+1) p}$
* Back to quality control problem (without replacement)
$>$ If I know k (but not R), then the Maximum Likelihood Estimator of R is

$$
\operatorname{MLE}(R)=\arg \max _{R} P_{R}(\{k\})
$$

$>$ One way is

$$
\frac{P_{R+1}(\{k\})}{P_{R}(\{k\})} \geq 1 \Leftrightarrow \frac{R+1}{R+1-k} \geq \frac{N-R}{N-R-(n-k)}
$$

Quality Control (cont'd)

* We are not interested in estimating R, but testing whether $\underbrace{R}_{\text {\#deficient ones }} \leq \underbrace{K}_{\text {quality standard }}$
* Defining a test is equivalent to defining a critical region that tells me when I should reject

$$
H_{0}: R \leq K \quad \rightarrow \quad M L E(R) \sim \frac{k N}{n}
$$

$>$ This is true because we assume that

$$
\frac{R}{N} \sim \frac{k}{n} \Rightarrow R \sim \frac{k N}{n}
$$

Critical region:

$$
W=\{k \in \mathbb{N}: k \geq r\}
$$

- W is the "rejection zone," because we want $\frac{k N}{n} \leq K . r$ is the critical value.
- Have to pick r "much larger" than $\frac{K n}{N}$; that is,

$$
M L E \gg K \Leftrightarrow \frac{k N}{n} \gg K \Leftrightarrow k \gg \frac{K n}{N}
$$

* 2 situations and 2 errors associated with the decision I take after running the experiment:

Truth	Result	Neject H_{0}
H_{0} true	Type I Error	
$R \leq K$		Type II Error H_{0}
H_{1} true		
$R>K$		

* Neyman's approach:
min[Type II Error], subject to Type I Error $\leq \underbrace{\alpha}_{\text {confidence level }}$
$>$ Pick α (e.g. 1% or 5\%)
- α is the probability of making Type I Error.
$>$ For each α, find r_{α}
$>$ Define W
$>$ Given k (result of your experiment), decide whether or not to reject H_{0}
* Quality Control when Sampling with Replacement
$>H_{0}: p \leq \frac{K}{N}$, where $p(=R / N)$ is the true probability of having deficient bulbs
$>M L E$ of p :

$$
\arg \max _{p} \underbrace{\left.\left[\begin{array}{l}
n \\
k
\end{array}\right) p^{k}(1-p)^{n-k}\right]}_{\text {likelihood function of } p}
$$

It is often useful to take the log-transformation of the likelihood function:

$$
\arg \max _{p}(L(p))=\arg \max _{p}\left(\ln \left\{\binom{n}{k} p^{k}(1-p)^{n-k}\right\}\right)
$$

Then, we can differentiate w.r.t. p, set FOC equal zero, and solve for p.

$$
\hat{p}=\frac{k}{n}
$$

Define critical region:

$$
W=\{k: \hat{p} \geq \underbrace{p(\alpha)}_{\text {critical value associated with } \alpha}\}
$$

* Extension: Multinomial distribution

$>$ We have K different colors, call them a_{1}, \ldots, a_{K}, each with p_{k} probability of being picked.
$>$ Draw a sample of n with replacement and independence

- $\Omega=\left\{\left(\omega_{1}, \ldots, \omega_{n}\right): \forall i, \omega_{i} \in\left\{a_{1}, \ldots, a_{K}\right\}\right\}$
- Here we care about the order of ω_{i} 's
- $P\left(\left\{\omega_{1}, \ldots, \omega_{n}\right\}\right)=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{K}^{n_{K}}$ with

$$
n_{k}=\sum_{i=1}^{n} \mathbf{1}_{\left\{\omega_{i} \in a_{k}\right\}}
$$

$>$ The probability of observing (un-ordered)

$$
P\left(\begin{array}{c}
n_{1} a_{1} \\
n_{2} a_{2} \\
\vdots \\
n_{K} a_{K}
\end{array}\right)=\left(p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{K}^{n_{K}}\right) T
$$

with $\sum_{k=1}^{n} n_{k}=n$.

- $\quad T$ is the number of configurations:
- Choose $\binom{n}{n_{1}}$ pick n_{1} spots among the n available
- Choose $\binom{n-n_{1}}{n_{2}}$ pick n_{2} spots among the $\left(n-n_{1}\right)$ left
- $\quad \vdots$

Then,

$$
T=\binom{n}{n_{1}}\binom{n-n_{1}}{n_{2}}\binom{n-n_{1}-n_{2}}{n_{3}} \cdots\binom{n-\sum_{k=1}^{K-1} n_{k}}{n_{k}}=\frac{n!}{\prod_{k=1}^{K} n_{k}!}
$$

Result:
For p_{1}, \ldots, p_{K} such that $p_{k} \in[0,1]$ and $\sum_{k=1}^{K} p_{k}=1$,
The multinomial distribution $M\left(n ; p_{1}, \ldots, p_{K}\right)$:

$$
P\left(\begin{array}{c}
n_{1} a_{1} \\
n_{1} a_{2} \\
\vdots \\
n_{K} a_{K}
\end{array}\right)= \begin{cases}\frac{n!}{\prod_{k=1}^{K} n_{k}!} \cdot \prod_{k=1}^{K} p_{k}^{n_{k}} & \text { if } \sum_{k=1}^{K} n_{k}=n \quad \text { with } n_{k} \in[0, n] \\
0 & \text { otherwise }\end{cases}
$$

- This is a probability distribution on $\{0,1, \ldots, n\}^{K}$
- Multinomial when $K=2, M\left(n ; p_{1}, p_{2}\right)$ and $p_{2}=1-p_{1}$. The distribution is about

$$
\left(n_{1}, n_{2}\right) \in\{0,1, \ldots, n\}^{2}=\Omega
$$

- The binomial $B\left(n, p_{1}\right)$ is a distribution about

$$
n_{1} \in\{0,1, \ldots, n\}=\Omega
$$

Counting Process

* Events that occur over time (e.g. event could be a customer entering a store)
$>$ A counting process is a stochastic process $\{N(t): t \geq 0\}$ such that
- It is non-negative, i.e. $N(t) \geq 0$
- $N(t)$ is an integer
- Non-decreasing, i.e. $s \leq t \Rightarrow N(s) \leq N(t)$
* Independence of 2 events occurring in 2 different (disjoint) time intervals
* Poisson Process. For an interval of size $\epsilon>0$,

$$
\frac{P(1 \text { event })}{\epsilon} \xrightarrow{\epsilon \rightarrow 0} \lambda
$$

Here λ is the intensity of arrival.

$$
\frac{P(\text { more than } 1 \text { event })}{\epsilon} \xrightarrow{\epsilon \rightarrow 0} 0
$$

In the same sense, we are interested in events that do not happen too often.

* Question: What is the probability of observing k events in the time interval $[0, t]$?
$>$ We divide $[0, t]$ into n sub-intervals of length $\Delta t=t / n$.
- Consider intervals $[0, \Delta t),[\Delta t, 2 \Delta t), \ldots$, and treat them as n consecutive experiments
- For each interval,

$$
\begin{aligned}
p_{n} & \rightarrow \text { observe exactly } 1 \text { event } \\
p_{n}^{\prime} & \rightarrow \text { observe more than } 1 \text { event } \\
1-p_{n}-p_{n}^{\prime} & \rightarrow \text { observe } 0 \text { event }
\end{aligned}
$$

I have

$$
\frac{p_{n}}{t / n} \xrightarrow{n \rightarrow \infty} \lambda \quad \Leftrightarrow \quad n p_{n} \xrightarrow{n \rightarrow \infty} \lambda t
$$

and

$$
\frac{p_{n}^{\prime}}{t / n} \xrightarrow{n \rightarrow \infty} 0 \Leftrightarrow n p_{n}^{\prime} \xrightarrow{n \rightarrow \infty} 0
$$

- Recall the multinomial formula:

$$
\begin{aligned}
& P\left(\begin{array}{c}
k \text { interval with exactly } 1 \text { event } \\
k^{\prime} \text { interval with more than } 1 \text { event } \\
n-k-k^{\prime} \text { interval with } 0 \text { event }
\end{array}\right) \\
& \qquad=\frac{n!}{k!k^{\prime}!\left(n-k-k^{\prime}\right)!} p_{n}^{k}\left(p_{n}^{\prime}\right)^{k^{\prime}}\left(1-p_{n}-p_{n}^{\prime}\right)^{n-k-k^{\prime}}
\end{aligned}
$$

- What happens when $n \rightarrow \infty$ while k, k^{\prime} remains fixed / finite?

$$
\frac{n!}{\left(n-k-k^{\prime}\right)!}=\underbrace{n(n-1)(n-2) \cdots\left(n-k-k^{\prime}+1\right)}_{k+k^{\prime} \text { terms }} \sim n^{k+k^{\prime}}
$$

$$
\begin{aligned}
& \frac{n!}{k!k^{\prime}!\left(n-k-k^{\prime}\right)!} p_{n}^{k}\left(p_{n}^{\prime}\right)^{k^{\prime}}\left(1-p_{n}-p_{n}^{\prime}\right)^{n-k-k^{\prime}} \\
& \sim \frac{1}{k!k^{\prime}!} \underbrace{\left(n p_{n}\right)^{k}}_{\sim(\lambda t)^{k}} \underbrace{\left(n p_{n}^{\prime}\right)^{k^{\prime}}}_{\begin{array}{c}
\text { very small unless } k^{\prime}=0 \\
\text { this is of order o(1) }
\end{array}}\left(1-p_{n}-p_{n}^{\prime}\right)^{n-k-k^{\prime}} \\
& \left(1-p_{n}-p_{n}^{\prime}\right)^{n-k-k^{\prime}}=\exp \{\left(n-k-k^{\prime}\right) \log (1-\underbrace{p_{n}}_{\frac{\lambda t}{n}}-\underbrace{p_{n}^{\prime}}_{o\left(\frac{1}{n}\right)})\}
\end{aligned}
$$

For small $x, \log (1+x) \sim x$. So the probability is constant as $n \rightarrow \infty$.
Then,

$$
\begin{aligned}
P\binom{k \text { interval with } 1 \text { event exactly }}{n-k \text { interval with } 0 \text { event }} & \sim \frac{1}{k!}(\lambda t)^{k} \underbrace{\left(1-p_{n}\right)^{n-k}}_{\sim \exp (-\lambda t)} \\
& \sim \frac{1}{k!}(\lambda t)^{k} e^{-\lambda t}
\end{aligned}
$$

This approximately works for k finite and n large enough.
$>$ Therefore, we have defined the Poisson distribution with parameter over $\mathbb{N} \cup\{0\}$:

$$
P(k \text { events })=\frac{1}{k!}(\lambda t)^{k} e^{-\lambda t}
$$

- Check that $\sum_{k=0}^{\infty} P$ (k events $)=1$. this is true from the fact that the summation is a Taylor expansion for $e^{-\lambda t}$.
- The only important parameter of the Poisson distribution is $\mu=\lambda t$.

Real Random Variable

* The Lebesgue Measure

$>$ Example: I draw randomly a number x between 0 and 1 . What is the probability that $P(x<0.47)$?

- Choice for the first decimal number:

$$
\{0,1,2,3\} \rightarrow \text { choice for the second decimal is }\{0, \ldots, 9\}
$$

$\{4\} \rightarrow$ choice for the second decimal is $\{0, \ldots, 6\}$
Then, a total of 47 choices out of 100, namely

$$
P(x<0.47)=\frac{47}{100}=0.47
$$

- In the book, they calculate $P(x \leq 0.47) \rightarrow \neq^{+}$proof $P(x=0.47)=0$.

Define an infinite sequence of decimal digits and element must coincide with the decimal digits of x

$$
P(x=0.47)=\lim \downarrow P\left(A_{n}\right)=\lim \downarrow \frac{1}{10^{n}}=0
$$

* Definition. The Borel sets \mathcal{B} of \mathbb{R} are the smallest σ-algebra of \mathbb{R} containing all the open intervals in \mathbb{R}.
> Any interval is a Borel set (but not every Borel set is an interval), and the set of all Borel sets is a σ-algebra.
$>$ (all possible) Borel sets $=$ Borel ring $=$ Borel field $=$ Borel σ-algebra
$>$ Theorem.

$$
\mathcal{B}=\underbrace{\sigma((-\infty, x]: x \in \mathbb{R})}_{\begin{array}{c}
\text { the smallest } \sigma \text {-algebra containing } \\
\text { all the semi-open intervals }(-\infty, x]
\end{array}}
$$

\nsim Intervals \rightarrow algebra \mathcal{F} spanned by intervals

$$
\begin{gathered}
\forall A \in \mathcal{F}: A=\bigcup_{i=1}^{n} F_{i}, \quad \forall i \neq j: F_{i} \cap f_{j}=\emptyset \\
P(A)=\sum_{i=1}^{n} P\left(F_{i}\right)
\end{gathered}
$$

* Definition. Outer Measure. Suppose
$>\mathcal{F}$ is an algebra on Ω
$>P$ is σ-additive (i.e. countably additive) on \mathcal{F} with $P(\Omega)=1$
Then, the outer measure of any $A \in \Omega$ is

$$
P^{*}(A)=\inf _{\left(A_{i}\right)_{i} \in \mathcal{F} \text { such that } A \subseteq\left(\cup_{i=1}^{\infty} A_{i}\right)} \sum_{i=1}^{\infty} P\left(A_{i}\right)
$$

* For any set $A \in \mathcal{F}$, we can show that $P^{*}(A)=P(A)$.
$>$ First, we show $P^{*}(A) \leq P(A)$
Since $A \in \mathcal{F}$, we can define $A_{1}=A$ and $A_{i}=\emptyset$ for all $i \geq 2$. Then,

$$
\left(A_{i}\right)_{i \in \mathbb{N}} \in \mathcal{F} \Rightarrow A \subseteq\left(\bigcup_{i \in \mathbb{N}} A_{i}\right)=A \Rightarrow \sum_{i \in \mathbb{N}} P\left(A_{i}\right)=P(A)
$$

Therefore, $P^{*}(A)$ is actually the inf over all possible sequences.

$$
P^{*}(A)=\inf \sum P\left(F_{i}\right) \leq P(A)
$$

$>$ Second, we show that $P(A) \leq P^{*}(A)$.
We know (by assumption) that $A \subseteq\left(\mathrm{U}_{j \in \mathbb{N}} B_{j}\right)$. Define

$$
C_{n}=\bigcup_{j=1}^{n} B_{j}
$$

Clearly, C_{n} is increasing, and $\left(A \cap C_{n}\right)$ is also increasing to A.

Recap

* \mathcal{F} is an algebra on Ω
* P is σ-additive on \mathcal{F} with $P(\Omega)=1$
* Outer measure of $A \subset \Omega$

$$
P^{*}(A)=\inf _{\left(A_{i}\right)_{i} \in \mathcal{F} \text { such that } A \subseteq\left(\cup_{i=1}^{\infty} A_{i}\right)}\left[\sum_{j=1}^{\infty} P\left(A_{j}\right)\right]
$$

* We have shown that $P^{*}(A) \leq P(A)$
* Continue to prove that $P(A) \leq P^{*}(A)$

For any $A_{j} \in \mathcal{F}$ such that $A \subseteq\left(\cup_{j=1}^{\infty} A_{j}\right)$, define

$$
B_{n}=\bigcup_{j=1}^{n} A_{j}
$$

Note that $\left(B_{n}\right)_{n}$ is an increasing sequence, and $\left(A \cap B_{n}\right)_{n}$ is increasing towards A.
We then have

$$
P(A)=\lim \uparrow \underbrace{P\left(A \cap B_{n}\right)}_{\leq P\left(B_{n}\right) \leq \sum_{j=1}^{n} P\left(A_{j}\right)}
$$

At the limit,

$$
P(A) \leq \sum_{j=1}^{\infty} P\left(A_{j}\right)
$$

This inequality is true for any sequence $\left(A_{j}\right) \in \mathcal{F}$ with $A \subseteq\left(\cup_{j=1}^{\infty} A_{j}\right)$. Therefore, we can conclude that the inequality remains over the infimum

$$
P(A) \leq \inf _{\left(A_{i}\right)_{i} \in \mathcal{F} \text { such that } A \subseteq\left(\cup_{i=1}^{\infty} A_{i}\right)} \sum_{j=1}^{\infty} P\left(A_{j}\right) \Leftrightarrow P(A) \leq P^{*}(A)
$$

* Theorem (admitted). P^{*} is the unique probability measure on $(\Omega, \sigma(\mathcal{F}))$ such that

$$
\forall A \in \mathcal{F}: P(A)=P^{*}(A)
$$

$>$ Remark. P^{*} is defined for any $A \subset \Omega$, but we cannot say that P^{*} is a probability measure on $(\Omega, \mathcal{P}(\Omega))$.

- This can be proved for the uniform probability measure on $[a, b]$
* The Lebesgue measure λ on $(\mathbb{R}, \mathcal{B})$ is defined such that

$$
\forall A \in \mathcal{B}: \lambda(A)=\lim _{n \rightarrow \infty}\left\{2 n P_{n}(A \cap[-n, n])\right\}
$$

where P_{n} is the uniform probability measure on $[-n, n]$

$$
P_{n}(A \cap[-n, n])=\frac{\text { length of }(A \cap[-n, n])}{\text { length of }[-n, n]}=\frac{\text { length of }(A \cap[-n, n])}{2 n}
$$

$>\lambda$ is a positive measure on $(\mathbb{R}, \mathcal{B})$ with convention

$$
x+\infty=\infty, \quad \forall x \in \mathbb{R}
$$

$>$ Warning: $\lambda(A \backslash B)=\lambda(A)-\lambda(B)$ only if $\lambda(B)<\infty$
$>$ Similarly, $\lambda\left(\lim \downarrow A_{n}\right)=\lim \downarrow \lambda\left(A_{n}\right)$ only if $\exists n^{*}: \lambda\left(A_{n}\right)<\infty$ for any $n \geq n^{*}$.

- Counter-example: $A_{k}=[k, \infty)$ where $\left(A_{k}\right)_{k} \downarrow \emptyset$

$$
\lambda\left(A_{k}\right)=\lim _{n \rightarrow \infty}\left\{2 n P_{n}\left(A_{k} \cap[-n, n]\right)\right\}=+\infty
$$

However, $\lim _{k \rightarrow \infty} A_{k}=\emptyset$. This is not equal to $\lambda\left(\lim \downarrow A_{k}\right)=0$. The disagreement results from the fact that we cannot find an n^{*} such that $\lambda\left(A_{k}\right)<\infty$ for $n \geq n^{*}$.

Multivariate extension

$$
\mathcal{B}^{d}=\sigma\left(\prod_{j=1}^{d}\left(-\infty, x_{j}\right]\right)
$$

is the smallest σ-field containing all $\prod_{j=1}^{d}\left(a_{j}, b_{j}\right)$

* Lebesgue measure on $\left(\mathbb{R}^{\boldsymbol{d}}, \mathcal{B}^{\boldsymbol{d}}\right)$

$$
\lambda_{d}(A)=\lim _{n \rightarrow \infty}(2 n)^{d} P_{n}\left(A \cap[-n, n]^{d}\right), \quad \forall A \subset \mathbb{R}^{d}
$$

Random Variable and Random Vectors (r.v.)

* (informally) A random variable is a function of the outcome of a statistical experiment.
$>$ Example.
- $\Omega=$ sample space of sequences of Bernoulli trials $\left(\omega_{1}, \ldots, \omega_{n}\right)$ with $\omega_{i} \in\{0,1\}$.
- Ω is endowed with a probability measure:

$$
\forall \omega \in \Omega: P(\{\omega\})=p^{\sum_{i=1}^{n} \omega_{i}}(1-p)^{n-\sum_{i=1}^{n} \omega_{i}}
$$

So the probability space is $(\Omega, \mathcal{P}(\Omega), P)$.

- We don't need the binomial coefficient here because we're only considering one observation.
- The random variable X is defined as

$$
\begin{aligned}
X: \Omega & \rightarrow\{0,1, \ldots, n\} \\
\omega & \mapsto X(\omega)=\sum_{i=1}^{n} \omega_{i}
\end{aligned}
$$

The associated probability is

$$
P(\{X=k\})=P\left(X^{-1}(\{k\})\right)=P^{X}(k)=p^{k}(1-p)\binom{n}{k}
$$

where $X^{-1}(A)=\{\omega \in \Omega: X(\omega)=k\}$ with $A \subset \Omega$ (i.e. $A \in \mathcal{P}(\Omega)$).

- The probability measure P induces another probability measure P^{X} on $\{0,1, \ldots, n\}$ defined by

$$
\underbrace{P^{X}(k)}_{\begin{array}{c}
\text { induceed } \\
\text { rrobability } \\
\text { defined on } X(\Omega)
\end{array}}=\underbrace{P\left(X^{-1}(\{k\})\right)}_{\begin{array}{c}
\text { initial probability } \\
\text { measure ef ined } \\
\text { on } \Omega
\end{array}}
$$

- Remark. We say that $X \sim \mathcal{B}(n, p)$. P^{X} is the probability distribution (or law) of r.v. X
* More general case. Consider a probability space (Ω, \mathcal{A}, P).
$>$ Define

$$
X: \Omega \rightarrow \mathbb{R}^{d}
$$

with $X(\Omega)$ is not only countable part of \mathbb{R}^{d}

- $\quad X(\Omega)$ is the range (i.e. the minimum codomain). If Ω is countable, then the range of $X(\cdot)$ should also be countable.
- $P(\{X=x\})$ should not be sufficient to characterize P^{X}
- This is true because singletons have probability zero if X is in a continuum.
- Example. Suppose $X \sim U_{[a, b]}$. Then, $P^{X}(\{x\})=0$. So we cannot characterize P^{X}.
- Hopefully, we can use intervals.

$$
P^{X}((-\infty, x])=\left\{\begin{array}{cl}
1 & \text { if } x>b \\
\frac{x-a}{b-a} & \text { if } a \leq x \leq b, \quad \forall x \in \mathbb{R} \\
0 & \text { if } x<a
\end{array}\right.
$$

- We need to know that $P\left(X^{-1}((-\infty, x])\right)$ makes sense, because

$$
P\left(X^{-1}((-\infty, x])\right)=P^{X}((-\infty, x])
$$

That is, I need to know that $X^{-1}((-\infty, x]) \in \mathcal{A}$ for all x.

* Definition. (Ω, \mathcal{A}) measurable space
$>X: \Omega \rightarrow \mathbb{R}$ is \mathcal{A}-measurable if

$$
\forall x \in \mathbb{R}: X^{-1}((-\infty, x]) \in \mathcal{A}
$$

$>X: \Omega \rightarrow \mathbb{R}^{d}$ is \mathcal{A}-measurable if

$$
\forall x \in \mathbb{R}^{d}: X^{-1}\left(\prod_{j=1}^{d}\left(-\infty, x_{j}\right]\right) \in \mathcal{A}
$$

$>$ The pre-image of Borel sets should belong to the σ-algebra.

* Definition. If (Ω, \mathcal{A}, P) is a probability space, any function $X: \Omega \rightarrow \mathbb{R}$ which is $\mathcal{A}-$ measurable is called random variable.
* Theorem. Suppose

$$
X: \Omega \rightarrow \mathbb{R}^{d}, \quad \text { with } \Omega \in \mathcal{A} \text { and } \mathbb{R}^{d} \in \mathcal{B}^{d}
$$

X is \mathcal{A}-measurable if and only if $\forall A \in \mathcal{B}^{d}: X^{-1}(A) \in \mathcal{A}$.
$>$ Proof. If $\forall A \in \mathcal{B}^{d}: X^{-1}(A) \in \mathcal{A}$ is true. Then, it must be true, in particular, that

$$
\forall x \in \mathbb{R}^{d}: X^{-1}\left(\prod_{j=1}^{d}\left(-\infty, x_{j}\right]\right) \in \mathcal{A} .
$$

Then, by definition X is \mathcal{A}-measurable.
Suppose X is \mathcal{A}-measurable. That is,

$$
\forall x \in \mathbb{R}^{d}: X^{-1}\left(\prod_{j=1}^{d}\left(-\infty, x_{j}\right]\right) \in \mathcal{A} .
$$

Need to show that

$$
\forall A \in \mathcal{B}^{d}: X^{-1}(A) \in \mathcal{A}
$$

Recall that $\mathcal{B}^{d}=\sigma\left(\prod_{j=1}^{d}\left(-\infty, x_{j}\right]: x \in \mathbb{R}^{d}\right)=\sigma(\mathcal{C})$. We have to show that

$$
\forall A \in \mathcal{C}: X^{-1}(A) \in \mathcal{A} \Rightarrow \forall A \in \mathcal{B}^{d}=\sigma(\mathcal{C}): X^{-1}(A) \in \mathcal{A}
$$

Or we need to show that

$$
X^{-1}(\mathcal{C}) \subset \mathcal{A} \Rightarrow X^{-1}(\sigma(\mathcal{C})) \subset \mathcal{A} .
$$

- Comments. We know that

$$
X^{-1}(\mathcal{C}) \subset \mathcal{A} \Rightarrow \sigma\left(X^{-1}(\mathcal{C})\right) \subset \mathcal{A}
$$

But what is not clear is that

$$
X^{-1}(\sigma(\mathcal{C})) \subset \sigma\left(X^{-1}(\mathcal{C})\right)
$$

Note that the converse is clear, since

$$
\sigma\left(X^{-1}(\mathcal{C})\right) \subset X^{-1}(\sigma(\mathcal{C}))
$$

because

$$
X^{-1}(\mathcal{C}) \subset \underbrace{X^{-1}(\sigma(\mathcal{C}))}_{\text {a } \sigma \text {-field }}
$$

- Lemma 1. Suppose

$$
f: \Omega \rightarrow \Omega^{\prime}
$$

with \mathcal{A}^{\prime} being a σ-field on Ω^{\prime}. Then, $f^{-1}\left(\mathcal{A}^{\prime}\right)$ is a σ-field on Ω.

- Lemma 2.

$$
\sigma\left(X^{-1}(\mathcal{C})\right)=X^{-1}(\sigma(\mathcal{C})) .
$$

From the above discussion and Lemma 1, we have

$$
\sigma\left(X^{-1}(\mathcal{C})\right) \subset X^{-1}(\sigma(\mathcal{C}))
$$

It remains to be proved that

$$
X^{-1}(\sigma(\mathcal{C})) \subset \sigma\left(X^{-1}(\mathcal{C})\right)
$$

Define

$$
\mathcal{F}=\left\{B \subset \mathbb{R}^{d}: X^{-1}(B) \in \sigma\left(X^{-1}(\mathcal{C})\right)\right\} .
$$

It can be shown (verify!) that \mathcal{F} is a σ-field.

$$
\begin{aligned}
\mathcal{C} \subset \mathcal{F} & \Rightarrow \sigma(\mathcal{C}) \subset \mathcal{F} \\
& \Rightarrow X^{-1}(\sigma(\mathcal{C})) \subset X^{-1}(\mathcal{F}) \subset \sigma\left(X^{-1}(\mathcal{C})\right) \\
& \Rightarrow X^{-1}(\sigma(\mathcal{C})) \subset \sigma\left(X^{-1}(\mathcal{C})\right)
\end{aligned}
$$

* Conclusion. When we have a function $X: \Omega \rightarrow \mathbb{R}^{d}$ with underlying probability space (Ω, \mathcal{A}, P), then we say that X is \mathcal{A}-measurable if and only if

$$
\sigma(X)=X^{-1}\left(\mathcal{B}^{d}\right)=\left\{X^{-1}(B): B \in \mathcal{B}^{d}\right\} \subseteq \mathcal{A}
$$

- The smallest σ-field that makes $X(\cdot)$ measurable is equal to the pre-image of the Borel σ-field.
$>$ Note.
- $\sigma(X)$ is the smallest σ-field that makes X measurable.
- Then, the probability distribution P^{X} of X is a probability measure on $\left(\mathbb{R}^{d}, \mathcal{B}^{d}\right)$:

$$
\forall B \in \mathcal{B}^{d}: P^{X}(B)=P\left(X^{-1}(B)\right)=P(X \in B)
$$

Hence, P^{X} is induced by P.

- When we say that

$$
X \sim U_{[a, b]}
$$

we mean

$$
P(X \in(c, d))=\frac{d-c}{b-a}
$$

for any $(c, d) \subset[a, b]$. But we don't really care about the original (Ω, \mathcal{A}, P).

Distribution Function

For any r.v. $X: \underset{(\mathcal{A}, P)}{\Omega} \rightarrow \underset{X(\omega)}{\mathbb{R}}$
$>$ Probability distribution of X is P^{X}, which is a probability measure on $(\mathbb{R}, \mathcal{B})$, defined by

$$
P^{X}(A)=P\left(X^{-1}(A)\right)
$$

and characterized by

$$
\forall x \in \mathbb{R}: P^{X}((-\infty, x])=P\left(X^{-1}((-\infty, x])\right)=P(X \leq x)
$$

$>$ We can use a cumulative distribution function to characterize

$$
\begin{aligned}
& F_{X}: \mathbb{R} \\
& \rightarrow[0,1] \\
& x
\end{aligned} \mapsto F_{X}(x)=P(X \leq x)
$$

- Remark. Can we characterize F_{X} ?

1) F_{X} must be non-decreasing
2) $F_{X}(x) \xrightarrow{x \rightarrow-\infty} 0$ and $F_{X}(x) \xrightarrow{x \rightarrow+\infty} 1$
3) F_{X} is right-continuous

- Why F_{X} might not be left-continuous?

$$
\lim \uparrow P\left(X \leq x-\frac{1}{n}\right)=P(X<x)=F_{X}\left(x^{-}\right)
$$

Thus, F_{X} is left-continuous at x if and only if $P(X=x)=0$.

Cumulative Distribution Function

* $F_{X}: \mathbb{R} \rightarrow[0,1]$ such that F_{X} is
$>$ Non-decreasing
$>F_{X}(x) \xrightarrow[x \rightarrow-\infty]{\longrightarrow} 0$ and $F(x) \underset{x \rightarrow+\infty}{\longrightarrow} 1$
$>$ Right-continuous
* Question: Is it sufficient to define F_{X} in order to characterize P^{X} ?
$>$ Yes!
$>$ From $F_{X} \mathrm{I}$ can define a σ-additive function Q on all the intervals

$$
\begin{aligned}
& Q((a, b])=F_{X}(b)-F_{X}(a) \\
& Q([a, b])=F_{X}(b)-F_{X}(a) \\
& Q((a,+\infty))=1-F_{X}(a)
\end{aligned}
$$

!
$>$ Then, we can construct the outer measure Q^{*}

- Unique
- Coincides with Q on the set of the intervals
$>Q^{*}$ is a probability measure on $(\mathbb{R}, \mathcal{B})$

Density Function

* Any real r.v. X with probability distribution characterized by F_{X}
$>F_{X}$ is continuous $\Leftrightarrow P(X=x)=0, \forall x \in \mathbb{R}$
$>F_{X}(x)>F_{X}\left(x^{-}\right)$where both are real numbers
- The interval $\left(F_{X}\left(x^{-}\right), F_{X}(x)\right)$ contains at least one rational number. We can therefore deduce that there are always at most a countable discontinuity points, i.e. points such that $P(X=x)>0$.

- There are only at most countable number of q_{i} 's in the above diagram.

* 2 Extreme Cases

$>F_{X}$ only has discontinuity points.

$$
\sum_{x \in \mathbb{R}} P(X=x)=1
$$

This is a discrete distribution. For example, Poisson distribution.
$>F_{X}$ is continuous. If F_{X} is differentiable on \mathbb{R} with continuous derivative f_{X}, then we need $F_{X}^{\prime} \geq 0$. In addition,

$$
\forall x \in \mathbb{R}: F_{X}(x)=\int_{-\infty}^{x} F_{X}^{\prime}(u) d u
$$

When $x \rightarrow+\infty$,

$$
\int_{-\infty}^{\infty} F_{X}^{\prime}(u) d u=1 .
$$

* (General Case) Definition. X is absolutely continuous if and only if

$$
\left\{\begin{array}{l}
\exists f_{X} \geq 0 \\
\forall x \in \mathbb{R}: F_{X}(x)=\int_{-\infty}^{\infty} f_{X}(u) d u
\end{array}\right.
$$

$>$ Remark. F_{X} may not be everywhere differentiable.
$>$ Remark. f_{X} is not unique, (it is defined up to a set of measure zero).
$>$ Absolutely continuous functions are those that can be differentiable almost everywhere.

* Example. Exponential Distribution.

$$
F_{X}(x)=\mathbf{1}_{\{x \geq 0\}}\left(1-e^{-x / \theta}\right)=\left\{\begin{array}{cl}
1-e^{-x / \theta} & \text { if } x \geq 0 \\
0 & \text { if } x<0
\end{array}\right.
$$

$>F_{X}$ is continuous
$>F_{X}$ is not differentiable at $x=0$

$$
\lim _{h \rightarrow 0^{+}} \frac{F_{X}(x+h)-F_{X}(x)}{h}=\lim _{h \rightarrow 0^{+}} \frac{1-e^{-h / \theta}-(1-1)}{h}=\lim _{h \rightarrow 0^{+}}-\frac{1-e^{-h / \theta}}{h}=\frac{1}{\theta}
$$

However, the derivative on the left is equal to zero.

Absolute Continuity

* Definition. X is absolutely continuous if and only if

$$
\exists f_{X} \geq 0: \forall x \in \mathbb{R}: F_{X}(x)=\int_{-\infty}^{x} F_{X}(u) d u
$$

* Interpretation: When X is absolutely continuous, its probability distribution can be characterized in 2 ways:
$>$ The CDF F_{X} (with its 3 properties)
$>$ The $\operatorname{PDF} f_{X}$ with
- $f_{X}(x) \geq 0$
- $\int_{-\infty}^{+\infty} f_{X}(x) d x=1$, where f_{X} is almost unique (cf Lebesgue measure zero)
* Connection between F_{X} and f_{X} :

$$
\begin{aligned}
F_{X}(x+\Delta x)-F_{X}(x) & =P(X \in(x, x+\Delta x])=\int_{x}^{x+\Delta x} f_{X}(u) d u \\
f_{X}(x) & =\lim _{\Delta x \rightarrow 0} \frac{F_{X}(x+\Delta x)-F_{X}(x)}{\Delta x}
\end{aligned}
$$

Also, for Δx small enough, we can use the following approximation:

$$
P(x<X \leq x+\Delta x) \approx \Delta x \cdot f_{X}(x)
$$

* Gamma Distribution, $\Gamma(p, \theta), p, \theta>0$.

$$
f_{X}(x)=I_{\{x \geq 0\}} \frac{1}{\theta^{p} \Gamma(p)} e^{-x / \theta} x^{p-1}
$$

$>$ Question: Is f_{X} a PDF?

$$
\int_{-\infty}^{+\infty} f_{X}(x) d x=\int_{0}^{\infty} \frac{1}{\theta^{p} \Gamma(p)} e^{-x / \theta} x^{p-1} d x=\frac{1}{\theta^{p} \Gamma(p)} \int_{0}^{\infty} e^{-x / \theta} x^{p-1} d x
$$

I want $\Gamma(p)$ to be such that

$$
\Gamma(p)=\frac{1}{\theta^{p}} \int_{0}^{\infty} e^{-x / \theta} x^{p-1} d x
$$

Change of variable: $y:=x / \theta$, so that $d y=(1 / \theta) d x$

$$
\Gamma(p)=\int_{0}^{\infty} e^{-y} y^{p-1} d y
$$

This is the Gamma function. There is no closed (or explicit) form for $\Gamma(\cdot)$. It is only defined through the integral.

- The Gamma function is a continuous analog of factorials.
* Properties of the Gamma Function
$>$ If $p>1$, then $\Gamma(p)=(p-1) \Gamma(p-1)$
$>$ If $p \in \mathbb{Z}$, then $\Gamma(p)=(p-1)$!
- Proof. Use integration by parts:

$$
\Gamma(p)=\int_{0}^{\infty} \underbrace{e^{-y}}_{u^{\prime}} \underbrace{y^{p-1}}_{v} d y
$$

Define

$$
\begin{aligned}
& u^{\prime}(y)=e^{-y} \Rightarrow u(y)=-e^{-y} \\
& v(y)=y^{p-1} \Rightarrow v^{\prime}(y)=(p-1) y^{p-2}
\end{aligned}
$$

Apply integration by parts:

$$
\Gamma(p)=\underbrace{\left[-e^{-y} y^{p-1}\right]_{0}^{\infty}}_{=0}+\underbrace{\int_{0}^{\infty} e^{-y}(p-1) y^{p-2} d y}_{(p-1) \Gamma(p-1)}
$$

$>X \sim \Gamma(p, \theta)$, then

$$
y=\frac{x}{\theta} \sim \Gamma(p, 1)=\Gamma(p)
$$

- Proof.

$$
P(Y \leq y)=P\left(\frac{X}{\theta} \leq y\right)=P(X \leq \theta y)=\int_{0}^{y \theta} \frac{e^{-x / \theta}}{\theta^{p} \Gamma(p)} x^{p-1} d x=\int_{0}^{y} \underbrace{\frac{e^{-u}}{\Gamma(p)} u^{p-1}}_{P D F \text { of } \Gamma(p, 1)} d u
$$

where $u=x / \theta$.

* Multivariate Extension:

$$
F_{X, Y}(x, y)=\int_{-\infty}^{x} \int_{-\infty}^{y} f_{x, y}(u, v) d v d u
$$

where

$$
\begin{aligned}
f_{x, y}(x, y)=\frac{\partial^{2} F_{X, Y}(x, y)}{\partial x \partial y} & \approx \frac{1}{k}\left[\frac{\partial F}{\partial x}(x, y+k)-\frac{\partial F}{\partial x}(x, y)\right] \\
& \approx \frac{1}{h k}[F(x+h, y+k)-F(x, y+k)-F(x+h, y)+F(x, y)] \\
& \approx \frac{1}{h k} P(x<X \leq x+h \wedge y<Y \leq y+k)
\end{aligned}
$$

For small enough h and k :

$$
P(x<X \leq x+h \wedge y<Y \leq y+k) \approx h k \cdot f_{X, Y}(x, y)
$$

Lebesgue Integral and Mathematical Expectation

* $\mathbf{1}^{\text {st }}$ case: X is discrete r.v.
$>X$ is finite or countable, and $P(x \in \mathcal{X})=1$.
- X is like the Ω in previous lectures.
$>$ Assume we repeat n times the statistical experiment and we get: $X_{1}, X_{2}, \ldots, X_{n} \sim p^{x}$
- $\quad X_{n}$'s represent the nth experiment and they all follow the same distribution (iid)
$>$ For all $x \in \mathcal{X}$, the sampling distribution is

$$
\frac{n_{x}}{n}=\frac{\# \text { of times that value } x \text { occurs }}{\# \text { of experiments }}=\text { relative frequency of } x
$$

where n_{x} is the number of times I observe the value x.
$>$ Then, we can derive the mathematical (or population) expectation of \boldsymbol{X}

$$
\bar{x}_{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}=\frac{1}{n} \sum_{x \in X} x \cdot n_{x}=\sum_{x \in X} x \cdot \frac{n_{x}}{n} \xrightarrow[\text { if } L L N \text { applies }]{ } \sum_{x \in \mathcal{X}} x P(X=x)=E X
$$

- Here we use x instead of X because we're talking about the realizations, not the random variables. We could have used X instead, in which case we'll be referring to the random variable before the experiments.
* Example 1. We draw (with replacement) N balls from a box that contains a proportion of p green balls.
$>x_{i}$: number of green balls picked during experiment \#i
$>$ Here $x_{i} \sim \mathcal{B}(N, p)$. Then,

$$
\begin{aligned}
& E X=\sum_{x=0}^{N} x \underbrace{P(X=x)}_{\mathcal{B}(N, p)}=\sum_{x=0}^{N} x\binom{N}{x} p^{x}(1-p)^{N-x} \\
&=N p \sum_{x=0}^{N} x \frac{(N-1)!}{x!(N-x)!} p^{x-1}(1-p)^{N-x} \\
&=N p \underbrace{\sum_{y=0}^{N-1} \frac{(N-1)!}{y!(N-y-1)!} p^{y}(1-p)^{N-(y+1)}}_{(p+(1-p))^{N-1}=1}=N p
\end{aligned}
$$

$>$ Here $y=x-1$

* Example 2. $X \sim \operatorname{Poisson}(\lambda)$

$$
E X=\sum_{x=0}^{\infty} x P(X=x)=\sum_{x=0}^{\infty} x \frac{e^{-\lambda} \lambda^{x}}{x!}=\lambda \sum_{x=1}^{\infty} \frac{e^{-\lambda} \lambda^{x-1}}{(x-1)!}=\lambda \underbrace{\sum_{y=0}^{\infty} \frac{e^{-\lambda} \lambda^{y}}{y!}}_{=1}=\lambda
$$

> CDF of Poisson distribution:

$$
F_{X}(x ; k, \lambda)=\sum_{k=0}^{x} \frac{e^{-\lambda} \lambda^{k}}{k!}
$$

* $2^{\text {nd }}$ case : X absolutely continuous

$$
P(X \in(x, x+\Delta x]) \approx f_{X}(x) \Delta x
$$

$$
\begin{gathered}
\sum x P(X \in(x, x+\Delta x]) \approx \sum x f_{X}(x) \Delta x \\
\Rightarrow E X=\underbrace{\int_{-\infty}^{+\infty} x f_{X}(x) d x}_{\text {well-defined if } E|X|<\infty} \approx \sum x_{i} \underbrace{f_{X}(x)\left(x_{i+1}-x_{i}\right)}_{\approx P\left(x_{i}<X \leq x_{i+1}\right)}
\end{gathered}
$$

* Example. $X \sim \Gamma(p, \theta)$

$$
E X=\int_{0}^{\infty} x \frac{1}{\theta^{p} \Gamma(p)} x^{p-1} e^{-x / \theta} d x=p \theta \underbrace{\int_{0}^{\infty} \underbrace{x}_{=\Gamma(p+1, \theta)} x^{p-1} e^{-x / \theta}}_{=1} d x=p \theta
$$

$>$ This leads to the linearity of the expectation operation E :

$$
E\left(\frac{X}{\theta}\right)=p
$$

- This property is not limited to the Gamma distribution.

Mathematical Expectation (cont'd)

* Want to define

$$
E X=\int_{\mathbb{R}} x \underbrace{\text { or } P(X=x)}_{f_{X}(x) d x=P(x<X \leq x+d x)} \underbrace{d P^{X}(x)}
$$

$>$ We have shown for the cases $f_{X}(x) d x=P(x<X \leq x+d x)$ and $P(X=x)$.
$>$ We will see that

$$
\int_{\Omega} X(\omega) d P(\omega)=\int_{\mathbb{R}_{\text {Identity function }}} \underbrace{x} d P^{X}(x)
$$

for $X: \Omega \rightarrow \mathbb{R}$.

* $1^{\text {st }}$ case: X takes a finite number of values that are non-negative

$$
X=\sum_{i=1}^{n} \alpha_{i} \mathbf{1}_{A_{i}}
$$

with $A_{i}=\left\{\omega: X(\omega)=\alpha_{i}\right\}$.
$\Rightarrow A_{i}$ is the pre-image of α_{i}.
Integrate on both sides:

$$
\int_{\Omega} X d P=\sum_{i=1}^{n} \alpha_{i} \underbrace{\int_{\Omega} \mathbf{1}_{A_{i}} d P}_{P\left(A_{i}\right)}=\sum_{i=1}^{n} \alpha_{i} P\left(A_{i}\right)
$$

where

$$
P\left(A_{i}\right)=E\left(\mathbf{1}_{A_{i}}\right)=\int_{\Omega} \mathbf{1}_{\left\{A_{i}\right\}} d P=\int_{A_{i}} 1 d P
$$

$>$ This extends to the case where X takes a countable number of non-negative values.

* $2^{\text {nd }}$ case: X is measurable non-negative r.v. such that

$$
X=\lim \uparrow \underbrace{\left\{\sum_{k=0}^{n 2^{n}-1} \frac{k}{2^{n}} \mathbf{1}_{\left\{\frac{k}{2^{n}} \leqslant X<\frac{k+1}{2^{n}}\right\}}\right\}}_{X_{n}}
$$

We can use the monotone convergence theorem to conclude:

$$
\int X d P=\lim \uparrow \int X_{n} d P
$$

In other words,

$$
E X=E\left(\lim \uparrow X_{n}\right)=\lim \uparrow E X_{n}
$$

* $3^{\text {rd }}$ case: X is measurable (real) r.v.

$$
X=X^{+}-X^{-}
$$

where

$$
X^{+}=\max \{X, 0\} \quad \text { and } \quad X^{-}=\max \{-X, 0\}
$$

Note that both X^{+}and X^{-}are non-negative.

$$
E X=E X^{+}-E X^{-}
$$

are well-defined and finite if and only if

$$
\left.\begin{array}{l}
E X^{+}<\infty \\
E X^{-}<\infty
\end{array}\right\} \Leftrightarrow E|X|<\infty \Leftrightarrow X \text { is integrable }
$$

$>$ Example.

* Note 1. $P=\alpha Q+(1-\alpha) \tilde{Q} \rightarrow$ measure

$$
\int X d P=\alpha \int X d Q+(1-\alpha) \int X d \tilde{Q}
$$

* Note 2. Transfer Theorem: Suppose $Y=\phi(X)$ where Y is integrable, i.e. $E|Y|<\infty$

$$
E Y=E[\phi(X)]=\int_{\Omega} \phi(X(\omega)) d P(\omega)=\int_{\mathbb{R}} \phi(x) d P^{X}(x)
$$

$>X$ is a r.v., and Y is a r.v. generated by X. Then, to find expectation of Y, we can either evaluate it using the underlying probability space of X (i.e. Ω), or treating X as the probability that generates Y, and evaluate Y using the distribution of X.

Conditional Probability, Bayes' Rule, and Independence

* Definition. A and B are independent if and only if

$$
P(A \cap B)=P(A) P(B)
$$

$>$ Note. If $P(B) \neq 0$, then A and B are independent if and only if

$$
Q^{B}(A):=\frac{P(A \cap B)}{P(B)}=P(A)
$$

- $\quad B$ is probable if $P(B) \neq 0$
- We can call $Q^{B}(A)$ a probability measure with all the probability 1 put on B.
- The probability space associated with Q^{B} is $\left(\Omega, \mathcal{A}, Q^{B}\right)$

$$
Q^{B}: C \rightarrow Q^{B}(C)=\frac{P(B \cap C)}{P(B)}
$$

This formula describes the statistical model when

- We draw from Ω
- But we are sure that $\omega \in B$, because we have some additional information
- Here $Q^{B}(\cdot)$ is a well-defined probability measure as long as $P(B) \neq 0$
- $\quad Q^{B}(\cdot)$ is called the conditional probability distribution.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

$>A$ and B are independent if and only if

- $\quad A$ has the same probability for $P(\cdot)$ and $P(\cdot \mid B)$
- $\quad P(A)=P(A \mid B)$
* Example 1. X represents duration (e.g. the Poisson process).
$>$ No memory property

$$
P(X \geq t+h \mid X \geq t)=P(X \geq h) \Leftrightarrow P(X \geq t+h)=P(X \geq t) P(X \geq h)
$$

- For instance, $P(X \geq t)$ is modeled using the exponential distribution

$$
P(X \geq t)=e^{-\theta t}
$$

- Given the Poisson,

$$
F_{X}(t)=P(X \leq t)=\left\{\begin{array}{cl}
1-e^{-\theta t} & \text { if } t \geq 0 \\
0 & \text { if } t<0
\end{array}\right.
$$

Then, the survival function is

$$
S_{X}(t)=P(X>t)=1-F_{X}(t)=\left\{\begin{array}{cl}
e^{-\theta t} & \text { if } t \geq 0 \\
1 & \text { if } t<0
\end{array}\right.
$$

* Example 2. A partition of Ω has the following properties:
$>H_{i} \cap H_{j}=\emptyset$, for any $i \neq j$
$>\mathrm{U}_{i=1}^{n} H_{i}=\Omega$
Decompose Ω into a partition.

$$
\Omega=\bigcup_{i=1}^{n} H_{i}
$$

where $P\left(H_{i}\right) \neq 0$ for all i. Then,

$$
P(A)=\sum_{i=1}^{n} P\left(A \mid H_{i}\right) P\left(H_{i}\right)
$$

> Consider this:

$$
\begin{aligned}
P(A) & =P(A \cap \Omega)=P\left(A \cap\left(H_{1} \cup \cdots \cup H_{n}\right)\right)=P\left(\left(A \cap H_{1}\right) \cup \cdots \cup\left(A \cap H_{n}\right)\right) \\
& =P\left(A \cap H_{1}\right)+\cdots+P\left(A \cap H_{n}\right)=P\left(A \mid H_{1}\right) P\left(H_{1}\right)+\cdots+P\left(A \mid H_{n}\right) P\left(H_{n}\right)
\end{aligned}
$$

$>$ This is the key to define mixtures of distributions (cf. Wikipedia article)
$>$ Example. $\Gamma(p)$

$$
f(x)=\frac{1}{\Gamma(p)} e^{-x} x^{p-1}
$$

- This is unimodal.

$$
\begin{gathered}
f^{\prime}(x)=\frac{1}{\Gamma(p)}\left(-e^{-x} x^{p-1}+(p-1) x^{p-2} e^{-x}\right) \\
f^{\prime}(x)=0 \Rightarrow x=p-1
\end{gathered}
$$

$>$ Suppose $X \sim\left[\alpha \Gamma\left(p_{1}\right)+(1-\alpha) \Gamma\left(p_{2}\right)\right]$.

$$
\begin{aligned}
& F_{X}(x)=\alpha F_{1}(x)+(1-\alpha) F_{2}(x) \\
& f_{X}(x)=\alpha f_{1}(x)+(1-\alpha) f_{2}(x)
\end{aligned}
$$

- If $F=\sum_{i} \alpha_{i} F_{i}$, with $\sum_{i} \alpha_{i}=1$ and $\alpha_{i} \geq 0$, then $f=F^{\prime}=\sum_{i} \alpha_{i} f_{i}$, where $f_{i}=F_{i}^{\prime}$.
- Here α_{i} 's can be interpreted as PMF values (or probability of singletons).
- This can extend to continuous cases, and the sum will be replaced by an integral.
- This works for any distribution functions (CDF and PDF)
$>$ Note 3. The statement A, B are independent $\Leftrightarrow P(A \cap B)=P(A) P(B)$ is always true.
- If $P(B)=0$, then any set A is independent of B
- Both sure and improbable sets are independent of anything, including themselves.
- A, B are independent

$$
\begin{aligned}
& \Leftrightarrow A^{c} \text { and } B \text { are independent } \\
& \Leftrightarrow A \text { and } B^{c} \text { are independent } \\
& \Leftrightarrow A^{c} \text { and } B^{c} \text { are independent }
\end{aligned}
$$

- This is the Independence Complement Theorem.
- For proof, use the following as initial step:

$$
\begin{gathered}
P(A)=P\left(A \cap\left(B \cup B^{c}\right)\right), \quad P(B)=P\left(\left(A \cup A^{c}\right) \cap B\right), \\
P\left(A^{c} \cap B^{c}\right)=P(A \cup B)^{c}
\end{gathered}
$$

Note 4. A, B, C are pairwise independent does NOT imply

$$
P(A \cap B \cap C)=P(A) \underbrace{P(B) P(C)}_{=P(B \cap C)}=P(A) P(B \cap C)
$$

where A is independent of $(B \cap C)$

* Definition. $\left(A_{i}\right)_{i \in I}$ are mutually independent if and only if for all $J \subseteq I$ with J finite,

$$
P\left(\bigcap_{i \in J} A_{i}\right)=\prod_{i \in J} P\left(A_{i}\right)
$$

* Theorem (0-1 Law of Borel-Cantelli). Consider $\left(A_{n}\right)_{n}$ sequence of events.

1) If $\sum_{i=1}^{\infty} P\left(A_{n}\right)<\infty$, then

$$
P\left(\lim \sup A_{n}\right)=0
$$

2) If $\sum_{n=1}^{\infty} P\left(A_{n}\right)=\infty$, and $\left(A_{n}\right)_{n}$ are mutually independent, then,

$$
P\left(\lim \sup A_{n}\right)=1
$$

$>$ Proof. Begin by recalling that

$$
\lim \sup A_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{p \geq n} A_{p}
$$

has the interpretation that A_{n} happens infinitely many times.
Proof of (1). Note that $\bigcup_{p \geq n} A_{p}$ is a decreasing sequence. Thus,

$$
P\left(\lim \sup A_{n}\right)=\lim \downarrow P\left(\bigcup_{p \geq n} A_{p}\right) \leq \lim \downarrow\left\{\sum_{p=n}^{\infty} P\left(A_{p}\right)\right\}=0
$$

The last equality is justified by the fact that each $P\left(A_{p}\right)$ is finite, and the sequence of partial sums is decreasing.

Proof of (2).

$$
P\left(\lim \sup A_{n}\right)=\lim \downarrow P\left(\bigcup_{p \geq n} A_{p}\right)=1-\lim \uparrow P\left(\bigcap_{p \geq n}\left(A_{p}\right)^{c}\right)
$$

Note that

$$
\begin{aligned}
P\left(\bigcup_{p \geq n} A_{p}\right) & =\lim _{N} \uparrow\left\{P\left(\bigcup_{N \geq p \geq n} A_{p}\right)\right\} \\
& =1-\lim _{N} \downarrow P\left(\bigcap_{N \geq p \geq n}\left(A_{p}\right)^{c}\right) \\
& =1-\underbrace{\lim _{N} \downarrow \prod_{N \geq p \geq n} P\left(\left(A_{p}\right)^{c}\right)}_{N} \\
& =1-\underbrace{\lim _{N} \downarrow \prod_{N \geq p \geq n}\left(1-P\left(A_{p}\right)\right)}_{=0}
\end{aligned}
$$

To show that the second term is indeed equal to zero,

$$
\prod_{N \geq p \geq n}\left(1-P\left(A_{p}\right)\right) \leq \prod_{N \geq p \geq n} \exp \left(-P\left(A_{p}\right)\right)=\exp \underbrace{\left\{-\sum_{N \geq p \geq n} P\left(A_{p}\right)\right\}}_{\rightarrow-\infty}
$$

The inequality is justified by $1-x \leq e^{-x} \approx 1-x+\frac{x^{2}}{2} \cdots$. Since

* Independence of r.v.
$>$ Suppose we have (Ω, \mathcal{A}, P), and we have random variables $X_{1} \in \mathbb{R}^{d_{1}}, X_{2} \in \mathbb{R}^{d_{2}}, \ldots$
X_{1}, X_{2} independent

$$
\begin{aligned}
& \Leftrightarrow \forall A_{1}, A_{2}: P\left(X_{1} \in A_{1}, X_{2} \in A_{2}\right)=P\left(X_{1} \in A_{1}\right) P\left(X_{2} \in A_{2}\right) \\
& \Leftrightarrow \forall A_{1}, A_{2}: X_{1}^{-1}\left(A_{1}\right) \text { and } X_{2}^{-1}\left(A_{2}\right) \text { are independent } \\
& \Leftrightarrow X_{1}^{-1}\left(\mathbb{R}^{d_{1}}\right) \text { and } X_{2}^{-1}\left(\mathbb{R}^{d_{2}}\right) \text { are independent }
\end{aligned}
$$

- Definition. (Ω, \mathcal{A}, P) with $\mathcal{C}_{i} \subset \mathcal{A}$. Then, $\left(\mathcal{C}_{i}\right)_{i \in I}$ are independent if and only if $\forall A_{i} \in \mathcal{C}_{i}:\left(A_{i}\right)_{i \in I}$ are independent

Definition. (Ω, \mathcal{A}, P) with X_{i} on $\left(\mathbb{R}^{d_{i}}, \mathbb{R}^{d_{i}}\right) .\left(X_{i}\right)_{i \in I}$ are independent if and only if

$$
\left(\sigma\left(X_{i}\right)\right)_{i \in I} \text { are independent }
$$

* Theorem. (Ω, \mathcal{A}, P) with $\mathcal{C}_{i} \subset \mathcal{A}$ for all $i \in I$. If

$$
\forall i \in I: A, B \in \mathcal{C}_{i} \Rightarrow(A \cap B) \in \mathcal{C}_{i}
$$

Then, $\left(\mathcal{C}_{i}\right)_{i \in I}$ are independent if and only if $\left(\sigma\left(\mathcal{C}_{i}\right)\right)_{i \in I}$ are independent.
$>$ One easy case is when $\mathcal{C}_{i}=\left\{A_{i}\right\} .\left(\left\{A_{i}\right\}\right)_{i \in I}$ are independent if and only if $\left(\left\{\emptyset, \Omega, A_{i},\left(A_{i}\right)^{c}\right\}\right)_{i \in I}$ are independent.
$>$ Case 1: discrete r.v. $P\left(X_{i} \in X_{i}\right)=1$ with X_{i} finite or countable. $\left(X_{i}\right)_{i \in I}$ are independent if and only if

$$
\left.\left.\begin{array}{l}
(X_{i}^{-1}(\underbrace{\sigma \text { field defined by }} \begin{array}{l}
\sigma\left(X_{i}\right) \\
\text { the values } x_{i} \in X_{i}
\end{array})
\end{array}\right)\right)_{i \in I} \text { independent } \quad \begin{aligned}
& X_{i}^{-1}(\underbrace{\mathcal{P}\left\{x_{i}: x_{i} \in X_{i}\right\}}_{\substack{\mathcal{P}\left(x_{i}\right)=\sigma\left(\left\{\left\{x_{i}: x_{i} \in X_{i j}\right\}\right\}\right) \\
\text { stable by intersection }}}))_{i \in I} \text { independent } \\
& \Leftrightarrow \forall J \subseteq I:|J|<\infty, \forall x_{i} \in X_{i}: P\left(X_{i}=x_{i}: i \in J\right)=\prod_{i \in J} P\left(X_{i}=x_{i}\right)
\end{aligned}
$$

- X_{i} is the support of X_{i}.

Independence or r.v.

* Theorem. (Ω, \mathcal{A}, P) with $\mathcal{C}_{i} \subset \mathcal{A}$ for all $i \in I$. If $\forall i \in I: A, B \in \mathcal{C}_{i} \Rightarrow A \cap B \in \mathcal{C}_{i}$, then $\left(\mathcal{C}_{i}\right)_{i \in I}$ are independent if and only if $\left(\sigma\left(\mathcal{C}_{i}\right)\right)_{i \in I}$ are independent.
>2 discrete r.v. X, Y are independent if and only if

$$
\begin{aligned}
& P(X=x, Y=y)=P(X=x) P(Y=y), \quad \forall x, y \\
& \Leftrightarrow \quad P^{(X, Y)}(\{x, y\})=P^{X}(\{x\}) P^{Y}(\{y\})
\end{aligned}
$$

* Definition. Given $\left(\Omega_{i}, \mathcal{A}_{i}, P_{i}\right)_{i \in I}$,

$$
P \equiv \bigotimes_{i \in I} P_{i}
$$

is the probability measure on $\left(\prod_{i \in I} \Omega_{i}, \otimes_{i \in I} \mathcal{A}_{i}\right)$, where

$$
\bigotimes_{i \in I} \mathcal{A}_{i}=\sigma\left(\prod_{i \in I} A_{i}: A_{i} \in \mathcal{A}_{i} \mid \forall i \text {, and } \exists J_{\text {finite }} \subset I: \forall i \notin J: A_{i}=\Omega_{i}\right)
$$

such that

$$
P\left(\prod_{i \in I} A_{i}\right)=\prod_{i \in I} \underbrace{P_{i}\left(A_{i}\right)}_{\begin{array}{c}
\text { only a fininte } \\
\text { number of } \\
\text { them are not } 1
\end{array}}
$$

$>$ Note. \otimes means the cross-product of collection of sets.
$>\Omega_{1}=\{a, b\}, \Omega_{2}=\{c, d\}, \mathcal{A}_{1}=\{\emptyset,\{a\},\{b\},\{a, b\}\}, \mathcal{A}_{2}=\{\varnothing,\{c\},\{d\},\{c, d\}\}$. Then,

$$
\Omega_{1} \times \Omega_{2}=\{(a, c),(a, d),(b, c),(b, d)\}
$$

$$
\mathcal{A}_{1} \otimes \mathcal{A}_{2}=\{\varnothing,\{a\} \times\{c\}, \ldots\}
$$

> Example.

$$
\begin{aligned}
& \mathbb{R}^{2}=\mathbb{R} \times \mathbb{R} \\
& (x, y) \in \mathbb{R}^{2} \Leftrightarrow x \in \mathbb{R}, y \in \mathbb{R}
\end{aligned}
$$

$A_{1} \times A_{2}$ with $A_{1} \in \mathcal{A}_{1}$ and $A_{2} \in \mathcal{A}_{2}$.

* Theorem. $\left(X_{i}\right)_{i \in I}$ are independent if and only if

$>$ For us, the index set I is most of time finite, and sometimes countable (if we are dealing with sequences)
$>$ When X 's are independent, then the global CDF is equal to the product of individual CDF.
* Case 2 (continuation from last class): X_{i} is a real-valued r.v. (extension to \mathbb{R}^{d} is "easy)

$$
\sigma\left(X_{i}\right)=X_{i}^{-1}(\mathcal{B})=X_{i}^{-1}(\sigma((-\infty, x]: x \in \mathbb{R}))_{\text {by Lemma } 2} \sigma(\underbrace{X_{i}^{-1}((-\infty, x]: x \in \mathbb{R})}_{\text {stable by intersection }})
$$

$\left(X_{i}\right)_{i \in I}$ are independent if and only if

$$
\left(X_{i}^{-1}((-\infty, x]: x \in \mathbb{R})\right)_{i \in I} \text { are independent }
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \forall J_{\text {finite }} \subset I, \forall x_{i} \in \mathbb{R}: P\left(X_{i} \leq x_{i}: i \in J\right)=\prod_{i \in J} P\left(X_{i} \leq x_{i}\right) \\
& \Leftrightarrow \quad F_{\left(X_{i}\right)_{i \in J}}\left(\left(x_{i}\right)_{i \in J}\right)=\prod_{i \in J} F_{X_{i}}\left(x_{i}\right)
\end{aligned}
$$

Therefore, if I is finite, I only have to check this last equality on I.
$>$ Random variables are independent if and only if their joint CDF is a product of their respective CDF's.

Expectation and Independence

* Definition. For a real r.v. X that is integrable,

$$
\underbrace{\operatorname{Var} X}_{\text {variance of } X}=\underbrace{E[(X-\underbrace{E X}_{\text {not } r . v .})^{2}]}_{\text {not r.v. }}
$$

* Proposition. Suppose
$\operatorname{Var} X<\infty \Leftrightarrow E X^{2}<\infty \Leftrightarrow X$ square integrable.
Then, $\operatorname{Var} X=E\left(X^{2}\right)-(E X)^{2}$.
$>$ Square integrable means $\int X^{2} d F_{X}$ exists.
$>$ Proof. By definition,

$$
\begin{aligned}
\operatorname{Var} X & =E\left[(X-E X)^{2}\right] \\
& =E\left[X^{2}+(E X)^{2}-2 X E X\right] \\
& =E X^{2}+(E X)^{2}-2 E X \cdot E X \\
& =E X^{2}-(E X)^{2}
\end{aligned}
$$

- Note. $\operatorname{Var} X \geq 0 \Rightarrow E X^{2} \geq(E X)^{2}$.
- The inequality in this case is due to the convexity of the square function
- Note that $\operatorname{Var} X$ is a number, not a random variable, so $\operatorname{Var} X \geq 0$.
- Note. Since X is r.v., we have to say $X \geq 0$ almost surely

* Jensen Inequality:

$>$ If ϕ is a concave function, then $E[\phi(X)] \leq \phi[E X]$.
$>$ If ϕ is a convex function, then $E[\phi(X)] \geq \phi[E X]$.

* Proposition. If X is square integrable, and a is a parameter, then

$$
\underbrace{E\left[(X-a)^{2}\right]}_{\begin{array}{c}
\text { mean squared error } \\
\text { with respect to } a
\end{array}}=M S E=\underbrace{\operatorname{Var} X}_{\begin{array}{c}
\text { measure of } \\
\text { variability }
\end{array}}+\underbrace{(E X-a)^{2}}_{\text {bias squared }}
$$

$>$ Note. a does not have to be $E X$.
$>$ Note. $\operatorname{Var} X=\operatorname{Var}(X-a)$.

$$
\begin{aligned}
\operatorname{Var}(X-a) & =E(X-a)^{2}-(E(X-a))^{2} \\
& =E\left(X^{2}-2 a X+a^{2}\right)-(E X-a)^{2} \\
& =E X^{2}-2 a E X+a^{2}-\left((E X)^{2}-2 a E X+a^{2}\right) \\
& =E X^{2}-(E X)^{2}=\operatorname{Var}(X)
\end{aligned}
$$

$>$ Note. $\operatorname{Var}(a X+b)=a^{2} \operatorname{Var} X$

$$
\begin{aligned}
& \operatorname{Var}(a X+b)=\operatorname{Var}(a X) \\
& =E(a X)^{2}-(E(a X))^{2} \\
& =a^{2} E X^{2}-a^{2}(E X)^{2} \\
& =a^{2}\left(E X^{2}-(E X)^{2}\right)=a^{2} \operatorname{Var}(X)
\end{aligned}
$$

* Property of variance.
> Markov inequality

$$
P(|X-E X| \geq a) \leq \frac{1}{a} E|X-E X|, \quad \forall a>0
$$

$$
P(|X-E X| \leq a) \geq 1-\frac{1}{a} E|X-E X|, \quad \forall a>0
$$

Bienayme-Chebyshev

$$
P(|X-E X| \geq a) \leq \frac{1}{a^{2}} \operatorname{Var} X
$$

$>$ Proof.

- Proof of Markov inequality.

$$
\begin{aligned}
a \mathbf{1}_{\{|X-E X| \geq a\}} & \leq|X-E X|, \quad \text { almost surely } \\
\Leftrightarrow \quad \mathbf{1}_{\{|X-E X| \geq a\}} & \leq \frac{1}{a}|X-E X|, \quad \text { almost surely }
\end{aligned}
$$

Take expectation of this inequality:

$$
E\left[\mathbf{1}_{\{|X-E X| \geq a\}}\right] \leq \frac{1}{a} E|X-E X| \Leftrightarrow P(|X-E X| \geq a) \leq \frac{1}{a} E|X-E X|
$$

- The key is to use the fact that the expectation of the indicator is the probability of the events.
- Proof of Bienayme-Chebyshev. Same as in the Markov case. Just to square everything.

$$
\begin{aligned}
a \mathbf{1}_{\{|X-E X| \geq a\}} \leq|X-E X| & \Rightarrow\left(a \mathbf{1}_{\{|X-E X| \geq a\}}\right)^{2} \leq(|X-E X|)^{2} \\
& \Rightarrow E\left(a \mathbf{1}_{\{|X-E X| \geq a\}}\right)^{2} \leq E(|X-E X|)^{2} \\
& \Rightarrow P(|X-E X| \geq a) \leq \frac{1}{a^{2}} \operatorname{Var} X
\end{aligned}
$$

Special cases of the above two inequalities.
$>$ Pick $a=k E|X-E X|$. Then the Markov inequality is

$$
P\left(\frac{|X-E X|}{E|X-E X|} \geq k\right) \leq \frac{1}{k}
$$

$>$ Pick $a=k \sqrt{\operatorname{Var} X}=k s(X)$, where $s(X)$ is the standard deviation. The B-C inequality is

$$
P\left(\frac{|X-E X|}{s(X)} \geq k\right) \leq \frac{1}{k^{2}}
$$

- Example. $k=2$

$$
P\left(\frac{|X-E X|}{s(X)} \geq 2\right) \leq \frac{1}{4} \Leftrightarrow P(X \in[E X-2 s(X), E X+2 s(X)]) \geq \frac{3}{4}
$$

* Averaging reduces variability?
$>$ If X_{1}, \ldots, X_{n} are n r.v.'s that are identically and distributed and independent (iid) $\sim X$, then

$$
\operatorname{Var}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n^{2}} \underbrace{\left[E\left(\sum_{i=1}^{n} X_{i}\right)^{2}-\left(E \sum_{i=1}^{n} X_{i}\right)^{2}\right]}_{n \operatorname{Var} X}=\frac{1}{n} \operatorname{Var} X
$$

Variance (cont'd)

* X_{1}, \ldots, X_{n} is $\operatorname{iid} P^{X}$

$$
\operatorname{Var}(\underbrace{\frac{1}{n} \sum_{i=1}^{n} X_{i}}_{\tilde{X}_{n}})=\frac{1}{n} \operatorname{Var}(X), \quad X \text { is a representative } r . v . \text { of } X_{i} \text { due to iid }
$$

Consequently,

$$
\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

is a consistent estimator of $E X$ if
$>E \bar{X}_{n}=E X$

$$
E\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right)=\frac{1}{n}\left(E\left(X_{1}\right)+\cdots+E\left(X_{n}\right)\right)=\frac{n E(X)}{n}=E(X)
$$

$>\operatorname{Var} \bar{X}_{n} \vec{n}_{0}^{0}$

* Example. $X_{i}=\mathbf{1}_{A}\left(Y_{i}\right), \bar{X}_{n}=f_{n}(A)$ is a consistent estimator of $P(A)$.
* Definition. $X_{n} \xrightarrow{L^{2}} X \Leftrightarrow E\left(X-X_{n}\right)^{2} \xrightarrow{n} 0$
$>\xrightarrow{\text { MSE }} \Leftrightarrow \xrightarrow{L^{2}} \Rightarrow \xrightarrow{\text { Prob }} \Rightarrow \xrightarrow{\text { Distribution }}$
$>$ Note. $\|X\|=\sqrt{E X^{2}}$ is the norm in the space of square-integrable r.v.
- L^{2} is a normed space (a Hilbert space with $\langle X, Y\rangle=E(X Y)$)
* Property 1 :

$$
\begin{aligned}
& X_{n} \xrightarrow{L^{2}} X \Leftrightarrow\left\{\begin{array}{c}
E X_{n} \rightarrow E X \\
\operatorname{Var}\left(X_{n}-X\right) \rightarrow 0
\end{array}\right. \\
& X_{n} \xrightarrow{L^{2}} a \Leftrightarrow\left\{\begin{array}{l}
E X_{n} \rightarrow E X \\
\operatorname{Var} X_{n} \rightarrow 0
\end{array}\right.
\end{aligned}
$$

Proof.

$$
\underbrace{E\left[\left(X-X_{n}\right)^{2}\right]}_{\rightarrow 0}=\operatorname{Var}\left(X-X_{n}\right)+\left(E X-E X_{n}\right)^{2} .
$$

* Property 2:

$$
X_{n} \xrightarrow{L^{2}} X \Rightarrow X_{n} \xrightarrow{P} X
$$

Proof. For any $\epsilon>0$

$$
P\left(\left|X_{n}-X\right|>\epsilon\right) \leq \frac{1}{\epsilon^{2}} \underbrace{E\left(X_{n}-X\right)^{2}}_{\begin{array}{c}
\rightarrow 0 \text { by } L^{2} \\
\text { convergence }
\end{array}}
$$

$>$ Note. Convergence in probability does not imply convergence in L^{2}

- Counter example:

Suppose $X_{n}=X$ for all $\omega \notin N_{n}$ with $P\left(N_{n}\right)=1 / n$. If $\omega \in N_{n}$, then $X_{n}=X+n$.

$$
\begin{aligned}
& P\left(\left|X_{n}-X\right|>\epsilon\right)=P\left(N_{n}\right)=\frac{1}{n} \rightarrow 0 \\
& E\left(X-X_{n}\right)^{2}=\frac{1}{n} n^{2}=n \rightarrow \infty \\
& \underbrace{\substack{1 / n \\
\omega \in N_{n} \\
X_{n}=X, \omega \in \overline{N_{n}}}}_{1-(1 / n)} \begin{array}{c}
X_{n}=X+n, \\
X_{2}
\end{array}
\end{aligned}
$$

- In this example, N_{n} is a sequence of sets in the sample space.
- X_{n} is almost equal to X except when $\omega \in N_{n}$.
- Let $D_{n}=X-X_{n}$.

$$
E D_{n}^{2}=P\left(N_{n}\right) E\left(D_{n}^{2} \mid N_{n}\right)+P\left(\overline{N_{n}}\right) E\left({\overline{D_{n}}}^{2} \mid \overline{N_{n}}\right)
$$

* Definition. Suppose X, Y are square integrable.
$>\operatorname{Cov}(X, Y)=E(X Y)-E X \cdot E Y=E\{(X-E X)(Y-E Y)\}$
$>X, Y$ are uncorrelated if and only if $\operatorname{Cov}(X, Y)=0$.
* Theorem (Law of Large Numbers for uncorrelated r.v.). Consider X_{n} such that

$$
E X_{n}=m, \quad \operatorname{Var} X_{n}=s^{2}<\infty, \quad \forall i \neq j: \operatorname{Cov}\left(X_{i}, X_{j}\right)=0
$$

Then, $\bar{X}_{n} \xrightarrow{L^{2}} m$.
$>$ This a strong LLN because it implies the weak LLN.

* Characteristic Function.

$>$ Covariance of X, Y does not characterize independence. The reason is that, knowing $E X, E Y, \operatorname{Var} X, \operatorname{Var} Y$ only characterize the marginal distribution of X and Y, but not the joint distribution of X and Y. But we need the joint distribution to determine independence.
$>$ We need to know $E[g(X)]$ for any g, which is equivalent to knowing P^{X}
$>$ Similarly, $E[g(X) h(Y)]$ for any g, h is equivalent to knowing $P^{X, Y}$.
$>$ Definition. Given a r.v. $X: \Omega \rightarrow \mathbb{R}^{d}$, the characteristic equation is

$$
\begin{aligned}
\phi_{X}(u) & =E\left[\exp \left(\mathrm{i} u^{T} X\right)\right], \quad \forall u \in \mathbb{R}^{d} \\
& =\cos \left(u^{T} X\right)+\mathrm{i} \sin \left(u^{T} X\right)
\end{aligned}
$$

This is bounded within the unit circle.

Characteristic Function (cont'd)

* Definition. The characteristic function of a r.v. $X: \Omega \rightarrow \mathbb{R}^{d}$ is

$$
\phi_{X}(u)=E\left(e^{i u^{T} X}\right), \quad \forall u \in \mathbb{R}^{d}
$$

$>$ Note. $u^{T} X \in \mathbb{R}$ is a scalar.
$>$ Note. Knowing ϕ_{X} on \mathbb{R}^{d} is equivalent to

- Knowing $E\left[h_{u}(X)\right]$, where $h_{u}(X)=\exp \left(\mathrm{i} u^{T} X\right)$ are a basis of function
- Knowing $E[h(X)]$
- Knowing P^{X}
* Theorem. Consider 2 r.v. X, Y.

$$
P^{X}=P^{Y} \Leftrightarrow \phi_{X}=\phi_{Y}
$$

* Theorem. Given a one-dimensional real random variable, if $E|X|^{n}<\infty$, then ϕ_{X} is n-times differentiable and

$$
\phi_{X}^{(k)}(0)=\mathrm{i}^{k} E X^{k}, \quad \forall k=0, \ldots, n
$$

When n is finite, we can switch the differentiation and expectation operation.

* Example. Calculation of moments of a r.v. (one-dimensional)

$$
\begin{aligned}
\phi_{X}(u)=E\left(e^{\mathrm{i} u X}\right) & \Rightarrow \phi_{X}^{\prime}(u)=\mathrm{i} E\left(X e^{\mathrm{i} u X}\right) \Rightarrow \phi_{X}^{\prime}(0)=\mathrm{i} E(X) \\
& \Rightarrow \phi_{X}^{(2)}(u)=\mathrm{i}^{2} E\left(X^{2} e^{\mathrm{i} u X}\right) \Rightarrow \phi_{X}^{(2)}(0)=-E\left(X^{2}\right)
\end{aligned}
$$

$>$ This is an "efficient" way to get higher order moments
$>$ Another way is to use the moment generating function (MGF):

$$
L_{X}(u)=E\left(e^{u^{T} X}\right)
$$

This is the LaPlace transformation.

$$
\begin{aligned}
\underbrace{\frac{\partial L_{X}(u)}{\partial u}}_{\underbrace{\text { column vector }}}=E\left(X e^{u^{T} X}\right) & \left.\Rightarrow \frac{\partial L_{X}(u)}{\partial u}\right|_{u=0}=E X \\
\frac{\partial}{\partial u}(\underbrace{}_{\text {row vector }_{\frac{\partial L_{X}(u)}{\partial u^{T}}}^{)}})=E\left(X X^{T} e^{u^{T} X}\right) & \left.\Rightarrow \frac{\partial^{2} L_{X}(u)}{\partial u \partial u^{T}}\right|_{u=0}=E\left(X X^{T}\right)
\end{aligned}
$$

- Note. $\partial L_{X} / \partial u$ will give a column vector, $\partial L_{X} / \partial u^{T}$ will give a row vector.
- Note. Since $L_{X}(u)$ is a scalar, the order of differentiation does not matter, i.e. can differentiate w.r.t u and then u^{T}. However, if $L_{X}(u)$ is a column vector, must differentiate w.r.t. a row vector u^{T}.
- For random vector X of dimension d

$$
\underbrace{\operatorname{Var} X}_{d \times d}=E\left(X X^{\prime}\right)-(E X)\left(E X^{\prime}\right)=E\left[(X-E X)(X-E X)^{\prime}\right]
$$

where $\left[E\left(X_{i} X_{j}\right)-E\left(X_{i}\right) E\left(X_{j}\right)\right]_{1 \leq i, j \leq d}$ is a typical element of $\operatorname{Var} X$.

- On the main diagonal $(i=j)$, we have $\operatorname{Var} X_{i}$
- Off the main diagonal $(i \neq j)$, we have $\operatorname{Cov}\left(X_{i}, X_{j}\right)$
* Covariance of random vectors: X of dimension d_{X} and Y of dimension d_{Y}

$$
\operatorname{Cov}(X, Y)=\underbrace{E\left(X Y^{\prime}\right)}_{d_{X} \times d_{Y}}-E(X) E\left(Y^{\prime}\right)
$$

$>$ With linear combination of X and Y, where A is $\left(n \times d_{X}\right)$ and B is $\left(m, d_{Y}\right)$

$$
\operatorname{Cov}(A X, B Y)=\underbrace{A}_{n \times d_{X}} \cdot \underbrace{\operatorname{Cov}(X, Y)}_{d_{X} \times d_{Y}} \cdot \underbrace{B^{\prime}}_{d_{Y} \times m}
$$

* Example of using MGF on Poisson distribution. Let $X \sim \mathcal{P}(\lambda)$

$$
\begin{gathered}
E\left(e^{u X}\right)=\sum_{k=0}^{\infty} e^{u k} P(X=k)=\sum_{k=0}^{\infty} e^{u k} \frac{e^{-\lambda} \lambda^{k}}{k!}=e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(e^{u} \lambda\right)^{k}}{k!}=e^{-\lambda} e^{\lambda e^{u}} \\
=\exp \left[\lambda\left(e^{u}-1\right)\right]
\end{gathered}
$$

Let $L_{X}(u)=\exp \left[\lambda\left(e^{u}-1\right)\right]$. Then,

$$
\begin{aligned}
& L_{X}^{\prime}(u)=\lambda e^{u} \cdot \exp \left[-\lambda\left(1-e^{u}\right)\right] \Rightarrow L_{X}^{\prime}(0)=\lambda \Rightarrow E X=\lambda \\
& L_{X}^{\prime \prime}(u)=\left[\lambda e^{u}+\left(\lambda e^{u}\right)^{2}\right] \exp \left[-\lambda\left(1-e^{u}\right)\right] \Rightarrow L_{X}^{\prime \prime}(0)=\lambda+\lambda^{2} \Rightarrow E X^{2}=\lambda+\lambda^{2}
\end{aligned}
$$

Therefore, $\operatorname{Var} X=E X^{2}-E^{2} X=\lambda+\lambda^{2}-\lambda^{2}=\lambda$.

* Theorem. 2 r.v. X, Y are independent if and only if

$$
\begin{aligned}
\forall u, v: \phi_{X, Y}(u, v) & =\phi_{X}(u) \phi_{Y}(v) \\
& =E\left[\exp \left(\mathrm{i} u^{T} X+\mathrm{i} v^{T} Y\right)\right] \\
& =\phi_{\binom{X}{Y}}\binom{u}{v} \\
& =E\left[\exp \left(\mathrm{i}\binom{u}{v}^{T}\binom{X}{Y}\right)\right]
\end{aligned}
$$

* Theorem. Let X, Y be independent random vectors of size d. Then

$$
\forall u \in \mathbb{R}^{d}: \phi_{X+Y}(u)=\phi_{X}(u) \phi_{Y}(u)
$$

$>$ Example (with Poisson distribution). $X \sim \mathcal{P}(\lambda), Y \sim \mathcal{P}(\mu)$, and X, Y are independent.

$$
\begin{aligned}
\phi_{X+Y}(u) & =\phi_{X}(u) \phi_{Y}(u) \\
& =E\left(e^{\mathrm{i} u X}\right) E\left(e^{\mathrm{i} u Y}\right) \\
& =\exp \left(-\lambda\left(1-e^{\mathrm{i} u}\right)\right) \exp \left(-\mu\left(1-e^{\mathrm{i} u}\right)\right) \\
& =\exp \left(-(\lambda+\mu)\left(1-e^{\mathrm{i} u}\right)\right)
\end{aligned}
$$

Therefore, $(X+Y) \sim \mathcal{P}(\lambda+\mu)$.
> Other ways to show this result. Let $k \in \mathbb{Z}$.

$$
\begin{aligned}
P(X+Y=k) & =\sum_{i=0}^{k} P(X=i, Y=k-i) \\
& =\sum_{i=0}^{k} P(X=i) P(Y=k-i) \\
& =\sum_{i=0}^{k} \frac{e^{-\lambda} \lambda^{i}}{i!} \cdot \frac{e^{-\mu} \mu^{k-i}}{(k-i)!}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{-(\lambda+\mu)}}{k!} \sum_{i=0}^{k} \underbrace{\frac{k!}{i!(k-i)!} \lambda^{i} \mu^{k-i}}_{=(\lambda+\mu)^{k}} \\
& =\frac{e^{-(\lambda+\mu)}}{k!}(\lambda+\mu)^{k} \\
& =\mathcal{P}(\lambda+\mu)
\end{aligned}
$$

* Let X_{1}, \ldots, X_{n} be n iid r.v. with $E X_{j}=\frac{1}{n} \sum_{j=1}^{n} X_{j}=m$ and $\operatorname{Var} X_{j}=\Sigma$

$$
\begin{aligned}
\phi_{\bar{X}_{n}}(u) & =E\left[\exp \left(\mathrm{i} u^{T} \bar{X}_{n}\right)\right] \\
& =E\left[\exp \left(\mathrm{i} u^{T} \frac{1}{n} \sum_{j=1} X_{j}\right)\right] \\
& =E\left[\prod_{j=1}^{n} \exp \left(\frac{\mathrm{i} u^{T}}{n} X_{j}\right)\right] \\
& =\prod_{j=1}^{n} E \underbrace{\left[\exp \left(\frac{\mathrm{i} u^{T}}{n} X_{j}\right)\right]}_{\phi_{X_{j}}(u / n)}, \quad \text { by independence } \\
& =\left[\phi_{X_{j}}\left(\frac{u}{n}\right)\right]^{n}, \quad \text { by identically distributed }
\end{aligned}
$$

$>$ This result is useful to understand the asymptotic behavior of \bar{X}_{n} :

$$
\begin{aligned}
\phi_{\sqrt{n}\left(\bar{X}_{n}-m\right)}(u) & =E\left[\exp \left(\mathrm{i} u^{T} \sqrt{n}\left(\bar{X}_{n}-m\right)\right)\right] \\
& =E\left[\exp \left(\mathrm{i} \frac{u}{\sqrt{n}} \sum_{j=1}^{n}\left(X_{j}-m\right)\right)\right] \\
& =\left[\phi_{X_{j}-m}\left(\frac{u}{\sqrt{n}}\right)\right]^{n}
\end{aligned}
$$

Deriving the Normal Distribution (cont'd)

* We have X_{1}, \ldots, X_{n} iid with $E X_{j}=m$ and $\operatorname{Var} X_{j}=\Sigma$

$$
\begin{aligned}
& \phi_{\bar{X}_{n}}(u)=\left[\phi_{X_{j}}\left(\frac{u}{n}\right)\right]^{n} \\
& \phi_{\sqrt{n}\left(\bar{X}_{n}-m\right)}(u)=E\left[\exp \left(\mathrm{i} u^{T} \sqrt{n}\left(\bar{X}_{n}-m\right)\right)\right] \\
&=E\left[\operatorname{expi} \frac{1}{\sqrt{n}} \sum_{j=1}^{n} u^{T}\left(X_{j}-m\right)\right] \\
&=\left[\phi_{u^{T}\left(X_{j}-m\right)}\left(\frac{1}{\sqrt{n}}\right)\right]^{n}
\end{aligned}
$$

where the second equality is justified by:

$$
\begin{aligned}
u^{T} \sqrt{n}\left(\bar{X}_{n}-m\right) & =\sqrt{n} u^{T}\left[\frac{1}{n} \sum_{j=1}^{n} X_{j}-m\right] \\
& =\sqrt{n} \cdot \frac{u^{T}}{n} \sum_{j=1}^{n}\left(X_{j}-m\right) \\
& =\frac{1}{\sqrt{n}} \sum_{j=1}^{n} u^{T}\left(X_{j}-m\right)
\end{aligned}
$$

and the third equality is justified by:

$$
\begin{aligned}
E\left[\exp \left(\frac{\mathrm{i}}{\sqrt{n}} \sum_{j=1}^{n} u^{T}\left(X_{j}-m\right)\right)\right] & =E\left[\prod_{j-1}^{n} \exp \left(\frac{\mathrm{i}}{\sqrt{n}} \sum_{j=1}^{n} u^{T}\left(X_{j}-m\right)\right)\right] \\
& =\prod_{j=1}^{\prod_{j=1}^{n} E \underbrace{\left[\exp \left(\frac{\mathrm{i}}{\sqrt{n}} \sum_{j=1}^{n} u^{T}\left(X_{j}-m\right)\right)\right]}_{\phi_{u^{T}\left(x_{j}-m\right)}\left(\frac{1}{\sqrt{n}}\right)}}
\end{aligned}
$$

So we have transformed the a function of a d-dimensional vector u into a function of a real number $1 / \sqrt{n}$. Let

$$
f(x)=\phi_{u^{T}\left(X_{j}-m\right)}(x)
$$

Taking the Taylor expansion of $f(\cdot)$

$$
f(x) \sim[f(0)+\underbrace{f^{\prime}(0)(x-0)}_{=0}+\frac{f^{\prime \prime}(0)(x-0)}{2!}+\underbrace{o\left(x^{2}\right)}_{1 / n}]
$$

Substitute back the original function

$$
\phi_{\sqrt{n}\left(\bar{X}_{n}-m\right)}(u)=\left[\phi_{u^{T}\left(X_{j}-m\right)}\left(\frac{1}{\sqrt{n}}\right)\right]^{n}
$$

$$
\begin{aligned}
& =\left[\begin{array}{c}
1+\underbrace{\phi_{u^{T}\left(X_{j}-m\right)}^{\prime}(0)}_{=\mathrm{i} E\left(u^{T}\left(X_{j}-m\right)\right)=0} \frac{1}{\sqrt{n}}+\underbrace{\phi_{u^{T}\left(X_{j}-m\right)}^{\prime \prime}(0)}_{\begin{array}{c}
\mathrm{i}^{2} E\left[\left(u^{T}\left(X_{j}-m\right)\right)^{2}\right] \\
=-\operatorname{Var}\left(u^{T}\left(X_{j}-m\right)\right) \\
=-u^{T} \Sigma u
\end{array}} \frac{1}{2 n}+o\left(\frac{1}{n}\right)
\end{array}\right]^{n} \\
& =\left[1-\frac{u^{T} \Sigma u}{2 n}+o\left(\frac{1}{n}\right)\right]^{n} \\
& =\exp \left\{\ln \left\{\left[1-\frac{u^{T} \Sigma u}{2 n}+o\left(\frac{1}{n}\right)\right]^{n}\right\}\right\} \\
& =\exp \{n \cdot \underbrace{\ln \left\{\left[1-\frac{u^{T} \Sigma u}{2 n}+o\left(\frac{1}{n}\right)\right]\right]}_{\approx-\frac{u^{T} \Sigma u}{2 n}}\} \\
& \approx \exp \left(-\frac{u^{T} \Sigma u}{2}\right)
\end{aligned}
$$

* Conclusion. For any X_{j} iid with $E X_{j}=m$ and $\operatorname{Var} X_{j}=\Sigma$,

$$
\phi_{\sqrt{n}\left(\bar{X}_{n}-m\right)}(u) \underset{n \rightarrow \infty}{\longrightarrow} \exp \left(-\frac{u^{T} \Sigma u}{2}\right)
$$

$>$ Question 1: What does it mean to have $\phi_{Y_{n}}(u) \rightarrow \phi_{Y}(u)$?

- Convergence in distribution
$>$ Question 2: What is Y when $\phi_{Y}(u)=\exp \left(-\frac{u^{T} \Sigma u}{2}\right)$?
- Normal r.v.
* Definition. For r.v. X_{n} in \mathbb{R}^{d} and X

$$
X_{n} \xrightarrow{d} X \Leftrightarrow \forall u \in \mathbb{R}^{d}: \phi_{X_{n}}(u) \xrightarrow{n \rightarrow \infty} \phi_{X}(u)
$$

* Theorem. $X_{n} \xrightarrow{P} X \Rightarrow X_{n} \xrightarrow{d} X$.
* Recall that

$$
L^{2} \Rightarrow \text { a.s. } \Rightarrow P \Rightarrow d
$$

* Example. $X_{i} \xrightarrow{d} X_{1}$, but

$$
P\left(\left|X_{n}-X_{1}\right|>\epsilon\right)=P\left(\left|X_{2}-X_{1}\right|>\epsilon\right) \nrightarrow 0
$$

where the equality is justified by

$$
P^{\left(X_{1}, X_{n}\right)}=P^{\left(X_{1} \otimes X_{n}\right)}=P^{X_{1}} \otimes P^{X_{n}}=P^{X_{1}} \otimes P^{X_{2}}=P^{\left(X_{1}, X_{2}\right)}
$$

* Convergence in distribution is about $E\left[h\left(X_{n}\right)\right] \rightarrow E[h(X)]$ as long as h is continuous. But $P(X \in A)=E\left[\mathbf{1}_{A}(X)\right]$ is not continuous.
* Central Limit Theorem. Suppose X_{i} 's are iid with $E X_{i}=\mu<\infty$ and $\operatorname{Var}\left(X_{i}\right)=\sigma<\infty$.

$$
\sqrt{n} \frac{\bar{X}_{n}-\mu}{\sigma} \xrightarrow{d} N(0,1) .
$$

Let

$$
\begin{gathered}
S_{n}:=X_{1}+\cdots+X_{n} \\
Z_{n}:=\frac{S_{n}-n \mu}{\sigma \sqrt{n}}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}, \quad \text { where } \bar{X}_{n}:=\frac{S_{n}}{n} \\
Y_{i}:=\frac{\bar{X}_{i}-\mu}{\sigma} .
\end{gathered}
$$

Then,

$$
Z_{n}=\sum_{i=1}^{n} \frac{Y_{i}}{\sqrt{n}}
$$

http://en.wikipedia.org/wiki/Central_limit theorem\#Proof

Convergence in Distribution

* Definition. X_{n}, X are r.v. in \mathbb{R}^{d}

$$
X_{n} \xrightarrow{d} X \Leftrightarrow \forall u \in \mathbb{R}^{d}: \phi_{X_{n}}(u) \underset{n \rightarrow \infty}{\longrightarrow} \phi_{X}(u)
$$

* Theorem. $X \xrightarrow{p} X \Rightarrow X_{n} \xrightarrow{d} X$.
$>$ Lemma. $X_{n} \xrightarrow{d} X \Leftrightarrow \forall u \in \mathbb{R}^{d}: u^{T} X_{n} \xrightarrow{d} u^{T} X$
Recall that

$$
X_{n} \xrightarrow{p} X \Leftrightarrow \forall \epsilon>0, \exists n_{0} \in \mathbb{N}, \forall n \geq n_{0}, \forall \eta>0: P\left(\left|X_{n}-X\right|>\epsilon\right)<\eta
$$

Want to show that the distance of two characteristic functions goes to zero:

$$
\begin{aligned}
& \left|\phi_{X_{n}}(u)-\phi_{X}(u)\right|=\left|E\left(e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right)\right| \\
& \leq E\left[\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right|\right] \\
& =\int\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| d P^{X} \\
& =\int_{\left|X_{n}-X\right| \leq \epsilon}\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| d P^{X}+\int_{\left|X_{n}-X\right|>\epsilon}\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| d P^{X}
\end{aligned}
$$

Note that in the second term,

$$
\begin{aligned}
& \left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| \leq\left|e^{\mathrm{i} u X_{n}}\right|+\left|e^{\mathrm{i} u X}\right| \leq 2 \\
\Rightarrow & \int_{A_{n}}\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| d P^{X} \leq \int_{A_{n}} 2 d P^{X} \\
\Leftrightarrow & \int_{A_{n}}\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| d P^{X} \leq 2 \int_{A_{n}} \mathbf{1}_{A_{n}} d P=2 P\left(A_{n}\right)
\end{aligned}
$$

where

$$
A_{n}=\left\{\omega \in \Omega:\left|X_{n}(\omega)-X(\omega)\right|>\epsilon\right\}
$$

For the first term, since $e^{\mathrm{i} u X}$ is continuous

$$
\left|e^{\mathrm{i} u X_{n}}-e^{\mathrm{i} u X}\right| \leq \alpha(\epsilon) P\left(\left|X_{n}-X\right| \leq \epsilon\right)
$$

* In the end, what we have "shown" is

$$
\left|\phi_{X_{n}}(u)-\phi_{X}(u)\right|<\eta
$$

$>$ To prove convergence, separate the set into two: one that has probability zero, the other that doesn't have probability zero, but get a bound for the thing that's inside the intergral.

* Theorem. Characterization of convergence in distribution:

$$
X_{n} \xrightarrow{d} X \Leftrightarrow E\left[h\left(X_{n}\right)\right] \rightarrow E[h(X)]
$$

for any continuous and bounded function h.

* Theorem.

$$
X_{n} \xrightarrow{d} X \Leftrightarrow F_{X_{n}}(x) \rightarrow F_{X}(x)
$$

for any x where $F_{X}(x)$ is continuous.
$>$ Example. Let $X_{n} \sim \delta_{\frac{1}{n}}$ and $X \sim \delta_{0}$. Consider $\delta_{\frac{1}{n}} \rightarrow \delta_{0}$.

$$
X_{n} \sim \delta_{\frac{1}{n}} \Rightarrow F_{X_{n}}(x)=\delta_{\frac{1}{n}}((-\infty, x])= \begin{cases}1 & \text { if } \frac{1}{n} \leq x \\ 0 & \text { if } \frac{1}{n}>x\end{cases}
$$

Thus,

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)= \begin{cases}1 & \text { if } 0<x \\ 0 & \text { if } 0 \geq x\end{cases}
$$

But

$$
F_{X}(x)=\delta_{0}((-\infty, x])= \begin{cases}1 & \text { if } 0 \leq x \\ 0 & \text { if } 0>x\end{cases}
$$

Therefore, $F_{X_{n}}$ converges to F_{X} everywhere except at point 0 .

- Note. If $f_{X_{n}} \xrightarrow{\text { a.s. }} f_{X}$, then $X_{n} \xrightarrow{d} X$.

Normal Distribution

* What we have done so far is to consider

$$
\begin{gathered}
X_{i} \sim \text { iid }: E X_{i}=m \& \operatorname{Var}_{i}=\Sigma \\
\sqrt{n}\left(\bar{X}_{n}-m\right) \stackrel{d}{\rightarrow} Y \text { such that } \phi_{Y}(u)=\exp \left(-\frac{u^{T} \Sigma u}{2}\right)
\end{gathered}
$$

* Definition. The standard normal distribution $\mathcal{N}(0,1)$ with density function

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{x^{2}}{2}\right), \quad \forall x \in \mathbb{R}
$$

$>$ It is not easy to define in close form $F(x)$
$>$ Difficult to show that $\int_{\mathbb{R}} f(x) d x=1$

Definition. Normal distribution $\mathcal{N}\left(m, \sigma^{2}\right)$ where $m \in \mathbb{R}$ and $\sigma^{2} \in \overline{\mathbb{R}}_{+}=(0, \infty)$

$$
\begin{aligned}
Y \sim \mathcal{N}\left(m, \sigma^{2}\right) & \Leftrightarrow Y=m+\sigma X \\
& \Leftrightarrow F_{Y}(y)=\Phi\left(\frac{y-m}{\sigma}\right)
\end{aligned}
$$

where $X \sim \mathcal{N}(0,1)$, and

$$
\Phi(x)=\int_{-\infty}^{x} \frac{1}{\sqrt{2 \pi}} e^{-u^{2} / 2} d u
$$

* Moment generating function

$$
\begin{aligned}
L_{Y}(u) & =E[\exp (u Y)] \\
& =E[\exp (u m+u \sigma X)] \\
& =\exp (u m) \cdot E(\exp (u \sigma X)) \\
& =\exp (u m) \cdot L_{\sigma X}(u) \\
& =\exp (u m) \cdot L_{X}(\sigma u)
\end{aligned}
$$

Here,

$$
\begin{aligned}
L_{X}(u) & =E[\exp (u X)] \\
& =\int_{-\infty}^{+\infty} e^{u x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-u)^{2}}{2}+\frac{u^{2}}{2}} d x \\
& =e^{\frac{u^{2}}{2}} \underbrace{\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2 \pi}} e^{-\frac{(x-u)^{2}}{2}} d x}_{=1} \\
& =e^{\frac{u^{2}}{2}}
\end{aligned}
$$

* Moments.

$$
\begin{gathered}
\frac{\partial L_{Y}(u)}{\partial u}=\left.\left(m+u \sigma^{2}\right) \exp \left(u m+\frac{u^{2} \sigma^{2}}{2}\right) \Rightarrow \frac{\partial L_{Y}(u)}{\partial u}\right|_{u=0}=m=E Y \\
\frac{\partial^{2} L_{Y}(u)}{\partial u^{2}}=\left.\left[\left(m+u \sigma^{2}\right)^{2}+\sigma^{2}\right] \exp \left(u m+\frac{u^{2} \sigma^{2}}{2}\right) \Rightarrow \frac{\partial^{2} L_{Y}(u)}{\partial u^{2}}\right|_{u=0}=m^{2}+\sigma^{2}=E Y^{2}
\end{gathered}
$$

Therefore,

$$
\operatorname{Var} Y=E\left(Y^{2}\right)-(E Y)^{2}=\sigma^{2}
$$

d-Dimensional Normal Distribution

Definition. Let X be a random vector in \mathbb{R}^{d}.

$$
X \text { is a normal vector } \Leftrightarrow \forall u \in \mathbb{R}^{d}: u^{T} X \sim \mathcal{N} .
$$

* If $E X=m$ and $\operatorname{Var} X=\Sigma$. We have

$$
\begin{gathered}
E\left(u^{T} X\right)=u^{T} m, \quad \operatorname{Var}\left(u^{T} X\right)=u^{T} \Sigma u . \\
\underbrace{L_{X}(u)}_{E\left(\exp \left(u^{T} X\right)\right)}=L_{u^{T} X}(1)=\exp \left(1 \cdot E\left(u^{T} X\right)+1 \cdot \frac{\operatorname{Var}\left(u^{T} X\right)}{2}\right)=\exp \left(u^{T} m+\frac{u^{T} \Sigma u}{2}\right)
\end{gathered}
$$

* Thus,

$$
X \sim \mathcal{N}(m, \Sigma) \Leftrightarrow L_{X}(u)=\exp \left(u^{T} m+\frac{u^{T} \Sigma u}{2}\right) \Leftrightarrow \varphi_{X}(u)=\exp \left(\mathrm{i} u^{T} m-\frac{u^{T} \Sigma u}{2}\right)
$$

* We can also show that

$$
f_{X}(x)=\frac{\exp \left[-\frac{1}{2}(x-m)^{T} \Sigma(x-m)\right]}{(2 \pi)^{d / 2}(\operatorname{det} \Sigma)^{1 / 2}}
$$

as long as $\operatorname{det} \sum \neq 0$.
$>$ In dimension 1, we have:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(x-m)^{2}}{2 \sigma^{2}}\right), \quad \forall x \in \mathbb{R}
$$

* Recall that: If X_{i} iid with $E X_{i}=m$ and $\operatorname{Var} X_{i}=\Sigma$, then

$$
\sqrt{n}\left(\bar{X}_{n}-m\right) \xrightarrow{d} Y \text { with } \varphi_{Y}(u)=\exp \left(-\frac{u^{T} \Sigma u}{2}\right)
$$

Thus, $Y \sim \mathcal{N}(0, \Sigma)$.

* Central Limit Theorem.

$>$ Let X_{i} be iid with $E X_{i}=m$ and $\operatorname{Var} X_{i}=\Sigma$. Then,

$$
\sqrt{n}\left(\bar{X}_{n}-m\right) \xrightarrow{d} \mathcal{N}(0, \Sigma) \text { and } \bar{X}_{n} \rightarrow \mathcal{N}\left(m, \frac{\Sigma}{n}\right)
$$

* Consider 2 r.v. X, Y

$$
\binom{X}{Y} \sim \mathcal{N}(m, \Sigma) \Leftrightarrow \varphi_{\binom{X}{Y}}\binom{u}{v}=\exp \left(\mathrm{i}\binom{u}{v}^{T} m-\frac{1}{2}\binom{u}{v}^{T} \Sigma\binom{u}{v}\right)
$$

Suppose X, Y are not correlated. This is true if and only if

$$
\operatorname{Cov}(X, Y)=0 \Leftrightarrow \Sigma=\left[\begin{array}{cc}
\Sigma_{X} & 0 \\
0 & \Sigma_{Y}
\end{array}\right]
$$

where $\Sigma_{X}=\operatorname{Var} X$ and $\Sigma_{Y}=\operatorname{Var} Y$. Then,

$$
\binom{u}{v}^{T} \Sigma\binom{u}{v}=u^{T} \Sigma_{X} v+v^{T} \Sigma_{Y} v
$$

Then,

$$
\varphi_{\binom{u}{v}}\binom{u}{v}=\exp \left(\mathrm{i} u^{T} m_{X}-\frac{u^{T} \Sigma_{X} v}{2}\right) \cdot \exp \left(\mathrm{i} v^{T} m_{Y}-\frac{v^{T} \Sigma_{Y} v}{2}\right)=\varphi_{X}(u) \varphi_{Y}(v)
$$

where

$$
m=\binom{m_{x}}{m_{Y}}=\binom{E X}{E Y}
$$

This implies that X, Y are independent.
In general,

$$
\binom{X}{Y} \sim \mathcal{N} \Rightarrow \operatorname{Cov}(X, Y)=0 \Leftrightarrow X, Y \text { are independent }
$$

* Transformation of r.v.
$>$ Let X be r.v. in \mathbb{R}^{d}.

$$
g: X \rightarrow Y
$$

where g is bijective.

$$
\begin{aligned}
E(Y) & =E[g(X)]=\int g(x) f_{X}(x) d x \\
& =\int g \underbrace{\left[g^{-1}(y)\right]}_{=x} f_{Y}(y) d y \\
& =\int g(x) f_{Y}(g(x))\left|J_{g(x)}\right| d x
\end{aligned}
$$

Here we have

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|J_{g^{-1}(y)}\right|
$$

