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Sample Space 
 
Problem of the Day: A family has two kids, one of them is a girl. What is the probability that 
both kids are girls? 

 To solve the problem, we need to have a statistical model. 
 

 Statistical model is a set of assumptions 
 A1: For each kid, Pr Pr 0.5 
 A2: The gender of the two kids are independent 

 
 Sample Space is the list of elementary events with their probability of occurrence. 

 
 Interpretation of the Problem 

1) Suppose I have no additional information about the family. Then we have 4 elementary 
events, each with the same probability 1 4⁄ . 

 
Since my information is that at least one kid is a girl, this rules out the event (B, B). Thus, 
the sample space becomes {(G,G), (G,B), (B,G)}, in which each element has the same 
probability 1 3⁄ . 
 
Therefore, the answer under Interpretation 1 is 1 3⁄ . 
 

2) Suppose, in addition to the information given, I have also met a girl from this family. 
Now the experiment is simply about the other kid whom I have never met. In this case, 
the sample space is {B, G}, and each element has the same probability 1 2⁄ .  
 
Therefore, the answer under Interpretation 2 is 1 2⁄ . The fact that I have met a girl in this 
family increases the probability of the family having two girls from 1 3⁄  to 1 2⁄ .  
 

 Conclusion: Always make explicit the following: 
 The statistical experiment 
 The sample space Ω , … ,  where ’s are elementary events and their 

probabilities 
 The statistical model 

 
 If possible, we should define the elementary events so that the statistical model leads to think 

that all elementary events have the same probability. 
 If the sample space is FINITE,  

number of elementary events in 
number of elements in Ω

#
#Ω 

where  is an event not necessarily elementary, i.e.  is a list of elementary events. 

B 

G 

(G, B) = 1/3  

(G, G) = 1/3 

(B, G) = 1/3 

(B, B) = 0 
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 In this case,  is the uniform probability on Ω,  
Ω 0, 1  

#
#Ω 
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Algebras and -Algebras of Events 
 
Problem: I throw a piece of chalk on the blackboard. What is the probability for the chalk to hit 
below the given curve? 
 

 
 

 Sample space: Ω       
 Statistical model 

 Assume that all the points on the blackboard have the same probability of being hit. 
Then,  Ω     0. That is, if we ask about the probability of a 
single point being hit, the answer is going to be zero. Therefore, we need to resort to a 
different measure of probability—expressed as the area under a curve. 

 

 
 

In the cases of constant and step-functions, the probability of the chalk hitting inside 
 is   

  Ω
. We can extend this idea to any function . 

 To find the probability of an event in general, given a function .  
• Define the event  as  

, Ω  
• Define the events  as 

, Ω  
where 

2  ,  

1 2
1

2
0

 

♦  for all  and all  
♦ lim  

1 3⁄  
A step-function 
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1
2  

2
2  

2  

1
2  
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Algebras and -Algebras (Cont’d)  
 

 Recap. 
Let , Ω   
Let , Ω  and ∑   

We can show 
1) ,  
2)  is increasing implies that  has a limit. Thus, lim  for all . 
 
As a result of (1) and (2), ,  is such that , i.e.  is 
increasing. Therefore, , and we can say  

lim  
We can define  for any set ,  such that  

lim lim    

More generally, whenever,  is Riemann integrable, we can get  by using the step-wise 
approximation. 
 

 Conclusion: For any sample Ω, the events  for which I can define  are the subsets 
of Ω including at least 
 Ω itself (by definition, Ω 1) 
 If  exists, then 1  
 If  and  are included, then  is included, and also  
 If  is included in , and all the ’s are such that  exist, then  has 

to be included. 
 

 Definition. Let Ω be the sample space. An algebra  of events of events of Ω is a family of 
subsets of Ω (i.e. Ω ) such that 

1) Ω  
2)   
3) ,   

 is a -algebra (or -field) if in addition, we have  
4) ,    
 

 Remark. If  is an algebra, , … ,  finite collection of sets such that , 
1, … , , then , and  

 Note. By the De Morgan’s Law, . 
 Remark. If Ω is finite and Ω , then  algebra  -algebra 

 Note. If Ω is infinite, then -algebra   algebra (but not reverse, see e.g. on P.11) 
 

 Theorem. If Ω is countable and  is a -algebra of Ω such that , then 
Ω  

 Proof. We will demonstrate the equality by showing Ω  and Ω .  
First, by the definition of a -algebra, Ω .  
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Next, to show that Ω , we need to show that Ω  . Since Ω 
is countable, we can describe its elements as  

Ω , … , , …  
Consider the following sets  defined for  as , … , . It is easy to show 
that  and  (e.g. by recurrence: ). 
Now consider any set Ω , we can always rewrite  as  

Ω 

 

lim  

lim  
lim  
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Probability Measure 
 

 Definition. Let Ω,  be a measurable space, where Ω is the sample space and  is a -
algebra.  

  is a measure on Ω,  if and only if 
 

 
is such that  

1) 0 
2) ∑  

where  are pair-wise disjoint sets with  for all . 
  is a probability measure if and only if  

  is a measure 
 Ω 1 

Therefore,  
0, 1  

 
 Remark. If , , then . 

 Consider countable collection , , , … , , use (2) and (1) 
 Remark. If , , then  
 Remark. Consider the measure space Ω, , , and 0 ∞ . The 

associated probability measure on ,  is defined as 

 

 Note.  ( ?) 
 

 Uniform Probability Measure 
 Ω is finite: 

1
#Ω , Ω 

 Ω is infinite (and not countable), e.g. Ω . I can define the Lebesgue Measure on , 
which is  

  ,  
 

 Consider Ω  (think of  as the blackboard), with 0 ∞. 
From the Lebesgue measure (area of ) on , I can define uniform probability 
measure  on  as  

,  

 
 Empirical Probability Measure 

 Assume we have a statistical experiment with draws Ω. 
 After  repetitions of the experiment, we have , … , . The sampling frequency of 

 is given by 
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1
 

 E.g.  could be “rolling a dice and get 3” or “rolling a dice and get 3, 4, 5” 
 We can show that  is a probability measure. 

 
 Law of Large Numbers (LLN) 

 Remark. We want to understand the connection between  and , where the 
latter is the population (“genuine”) probability of event . 

 E.g. Toss a coin 

 
If I repeat my experiment  times 

#   
 

Sample space: 
Ω ,  

under the assumption that  
1) Tosses are independent 
2) 1 2⁄  

1
2 , Ω  

• Strictly speaking, it is possible to only get heads with probability 1 2⁄ . In this 
case, 1, which does not converge to 1 2⁄ . However, 

1
1

2   0 
Here, we need to understand the meaning of  converges to  with 
probability approaching 1. 
 

 Definition. Monotone sequence 
 A sequence  is called an increasing sequence with limit: 

lim lim  

 A sequence  is decreasing with limit:  

lim lim  

 A monotone class is a class that contains the limits of all its increasing and decreasing 
sequences. 
 A -algebra is a monotone class (this is true by the last theorem in homework 1). 

Head   

Tail 1
Head 

Tail 

Tail 

Head 
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 A class is a collection of sets. 
 

 Theorem. Monotone Continuity of Probability Measure 
 Consider a probability measure  on Ω,  where  is a -algebra 
 Suppose  is an increasing (and countable) sequence in , and  a 

decreasing (countable) sequence in . Then, 
1) lim lim  
2) lim lim  
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Monotone Continuity Theorem (cont’d) 
 

 Theorem. Monotone Continuity of Probability Measure. 
 Consider a probability measure  on Ω,  where  is a -algebra 
 Suppose  is an increasing (and countable) sequence in , and  a 

decreasing (countable) sequence in . Then, 
1) lim lim  
2) lim lim  

Proof. We can define a sequence of disjoint sets  such that  
\ ,  

 
 Note. . (We can justify this claim by induction.) 

lim  

\  

\  

lim \  

lim \  

lim  
 

 Definition. Limit Superior and Limit Inferior: 

lim sup  

  occurs infinitely many times. 

lim inf  

  occurs eventually. 
 Ω,  a -algebra, , Ω. What does it mean to say lim sup ?? 

lim sup     ,  

 Similarly,  
lim inf     ,  

 Reference: 
http://en.wikipedia.org/wiki/Limit_superior_and_limit_inferior#Special_case:_discrete_
metric 
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  is an event because it is in the sample space Ω  with  
Ω ,    

  is the set containing all the ’s that converge to , i.e. 1 2⁄ . 
     

  0, ,  

  , ,
1

 

  
1

 

 Note. Union corresponds to existential quantifier, and intersection to universal quantifier: 
, and, . 

 
 

lim lim | |
1

 

lim lim sup| |
1

 

 Recall: 
1

 

with , ,  getting H 
Ω  

 
 Definition. Almost Surely Convergence and Probability Convergence 

. .
   0 sup 0 

    0 | | 0 
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Convergence 
 

 Recall the two definitions 
 Convergence in probability 

    0 | | 0 
  0 | | 1 

 Convergence almost sure 
. .

    0 sup 0 

  0 sup 1 

 Note. 
. .

     
 In general, however, the reverse does not hold. Consider  

sup  

 

 Convergence almost sure is the Strong LLN 
• This is the stochastic analog of “pointwise convergence”. 

 Convergence in probability is the Weak LLN 
• Continuous Mapping Theorem. For every continuous function , if , then 

. 
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Quality Control and Sampling with / without Replacement 
 

 Sampling with / without Replacement 
 Population of  individuals 
 Draw  individuals among  

 
 1st experiment (with replacement): 

 Draw 1 individual from the population (this is #1). Put it back 
 Draw 1 individual from the population (this is #2). Put it back 
 … 

 
 Sample space 

Ω , … ,  
where #Ω  
 Assuming independent draws, then 

1
 

 
 2nd experiment (without replacement): 

 Draw 1 individual from the population  
 This is #1 

 Draw 1 individual from the remaining population 
 This is #2 

 … 
 

 Sample space: 
Ω , … ,      

where Ω Ω with 
#Ω 1 2  

 
 The two experiments / models are compatible. 

 defined on Ω     defined on Ω , Ω  
We can move from the 1st experiment to the 2nd experiment by precluding repetition 

 Probability of having no repetition 
 probability of Ω  within Ω, Ω ,  
#Ω
#Ω  

 
 In both experiments, order matters. 

 
 Intuition 1. When  is sufficiently smaller than . 

 Then the probability of no repetition is really large  almost 1 
1 … 1  

 Application: for survey polls,  is usually quite large compared to ; so we can do 
calculations with repetitions. 
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 Intuition 2. When  is sufficiently close to  (extreme case: ) 

 1 2 3 4 5 6 7 

Probability 
of no 

repetition 
( ⁄ ) 

1 0.5 0.222 0.094 0.038 0.015 

0.006 
(99.4% 

chance of 
having a 

repetition!)
 Note. ! 
• The number of ways to choose an ordered sequence (without repetition) of all 

individuals. 
= number of permutations of the set of individuals 

• More generally 
!

! 

 
♦  is the number of ordered (or arranged) samples of size  without 

repetitions in a population of size . 
♦ Of course, several of these ordered samples share the exact same individuals 

but ordered in a different way (there are ! ways of permuting  individuals) 
♦ The number of subsets of  individual in a population of size  without 

repetition is given by the Binomial coefficient: 

!
!

! ! 

♦ Permutation (order matters) 
!

! 

♦ Combination (order does not matter) 
!

! ! 

 
 

 Quality Control without Replacement in Sampling 
  light bulbs with  deficient ones 

 Note.  is not random. 
 Minimum quality standard: No more than  among  are allowed to be deficient. 

 But it’s too expensive to check the  light bulbs. So select randomly  light bulbs 
among , observe  deficient ones. 

 Question: Given , , , , what values are likely for ? (want  to be smaller than ) 
 We want to assess: observed  and realize it depends on  (if  is large, then the 

probability of observing a large  is high, and vice versa). 
 Conversely: we have observed . It makes more likely the value of  for which 

observed large 
• Given ,   

♦ Note. Probability function indexed by . 
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• Given ,   
♦ Note. This is the likelihood function. 

 
 Sample Space  

 1st choice: Ω 0,1,2, … ,  
• However, this sample space is not convenient! Because the probabilities of the 

elementary events are not equal, i.e. probability distribution is not uniform. 
 

 2nd choice: Ω the  ordered samples that can be drawn without replacement. 
• For this sample space, we can define a uniform probability distribution. 

 deficient bulbs
elementary event 

#
#Ω 

probability of getting  deficient bulbs
from a sample of size  in an ordered way

number of ways to order
the  defective bulbs

 

 

 
 3rd choice: Ω the  subsets 
• Uniform probability is induced from uniform probability with ordered samples. 

 deficient bulbs
#
#Ω  

• This is the most appropriate sample space for the question. 
 

 Remark. We end up with a probability that is not uniform on 1,2, … ,  

,  

 This characterizes any event Ω  
 This is the hypergeometric distribution, , ,  
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Quality Control (cont’d) 
 

 Recap  
 Population:  
 Defective light bulbs:  
 Quality control:  

 Sample  with defect  
 

 Case 1. Draw without replacement 
 Ω  arranged samples 

    Ω  

Each sample in Ω  corresponds to exactly ! arranged sample in Ω. 
  means the probability of getting  defective bulbs in a set of  bulbs. 

 
 Case 2. Draw with replacement 

 Ω  samples that are arranged. 

 

 

1  

1  
• ⁄  is the population probability of picking a defective light bulb. 

 I have defined the Binomial probability distribution , . 
 Remark. If I consider Ω  sample where the arrangement does not matter (with 

replacement). 
There is no way we can define a uniform probability from Ω to Ω . 
• E.g. 2, and , , … ,  

Ω Ω
, ,
, ,
, ,

 

 
 1  gives the probability of success (picking a defective 

bulb) in one draw. 
• 1  is the probability of picking a sequence with  sucessses, exactly. 
• There are  such sequences 
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 Suppose we know  and . What is the most probable value for ? In other words, 
what is the mode? 

 
 

 For 1 

1
1

1 1

1
1  

 

1 1    
1

1 1     1  

 
 2 Cases: 
• If 1  is integer, then I have 2 modes: 1  and 1 1 

♦ 1     1  
• If 1  is not an integer, then I have 1 mode: largest integer below 1  

 
 Back to quality control problem (without replacement) 

 If I know  (but not ), then the Maximum Likelihood Estimator of  is 
arg max  

 
 One way is  

1    
1

1  

 

mode

1
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Quality Control (cont’d) 
 

 We are not interested in estimating , but testing whether 
# deficient ones quality standard

 

 Defining a test is equivalent to defining a critical region that tells me when I should reject  

              

 This is true because we assume that  

     
 Critical region: 

 
  is the “rejection zone,” because we want .  is the critical value. 

 Have to pick  “much larger” than ; that is,  

         
 

 2 situations and 2 errors associated with the decision I take after running the experiment: 
Result 

Truth Reject  Not Reject  

 true 
 Type I Error  

 true 
  Type II Error 

 
 Neyman’s approach:  

min   , subject to              
 

 

 Pick  (e.g. 1% or 5%) 
  is the probability of making Type I Error. 

 For each , find  
 Define  
 Given  (result of your experiment), decide whether or not to reject  

 
 Quality Control when Sampling with Replacement 

 , where ⁄  is the true probability of having deficient bulbs 
  of : 

arg max 1
likelihood function of 

   

It is often useful to take the log-transformation of the likelihood function: 
arg max arg max ln 1  

Then, we can differentiate w.r.t. , set FOC equal zero, and solve for . 
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̂  
Define critical region: 

̂
critical value associated with 

 

 
 Extension: Multinomial distribution 

 We have  different colors, call them , … , , each with  probability of being picked.  
 Draw a sample of  with replacement and independence  

 Ω , … , , , … ,  
• Here we care about the order of ’s  

 , … ,  with  

 

 The probability of observing (un-ordered) 

 

with ∑ . 
  is the number of configurations: 
• Choose  pick  spots among the  available 

• Choose  pick  spots among the  left 

•             
Then,  

!
∏ !

 

 Result: 
For , … ,  such that 0,1  and ∑ 1, 
The multinomial distribution ; , … , : 

!
∏ !

if     with 0,

0 otherwise

 

 This is a probability distribution on 0,1, … ,  
 

 Multinomial when 2, ; ,  and 1 . The distribution is about 
, 0,1, … , Ω 

 The binomial ,  is a distribution about  
0,1, … , Ω 
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Counting Process 
 

 Events that occur over time (e.g. event could be a customer entering a store) 
 A counting process is a stochastic process 0  such that 

 It is non-negative, i.e. 0 
  is an integer 
 Non-decreasing, i.e.      

 Independence of 2 events occurring in 2 different (disjoint) time intervals 
 Poisson Process. For an interval of size 0,  

1 event
     

Here  is the intensity of arrival. 
more than 1 event

    0 
In the same sense, we are interested in events that do not happen too often. 

 
 Question: What is the probability of observing  events in the time interval 0, ? 

 We divide 0,  into  sub-intervals of length Δ ⁄ . 
 Consider intervals 0, Δ , Δ , 2Δ , …, and treat them as  consecutive experiments 
 For each interval, 

observe exactly 1 event 
observe more than 1 event 

1 observe 0 event 
I have 

⁄                  

and  

⁄     0            0 

 
 Recall the multinomial formula: 

 interval with exactly 1 event
 interval with more than 1 event

 interval with 0 event
!

! ! ! 1  

 
 What happens when ∞ while ,  remains fixed / finite? 

!
! 1 2 1
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!
! ! ! 1  

 
1

! !
very small unless 

this is of order 

1  

 

1 exp log 1  

For small ,  log 1 . So the probability is constant as ∞. 
Then, 

 interval with 1 event exactly
 interval with 0 event

1
! 1  

1
!  

This approximately works for  finite and  large enough. 
 Therefore, we have defined the Poisson distribution with parameter over 0 : 

 events
1
!  

 Check that ∑  events 1. this is true from the fact that the summation is a 
Taylor expansion for . 

 The only important parameter of the Poisson distribution is . 
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Real Random Variable 
 

 The Lebesgue Measure 
 Example: I draw randomly a number  between 0 and 1. What is the probability that 

0.47 ? 
 Choice for the first decimal number: 

0,1,2,3           0, … ,9  
4           0, … ,6  

Then, a total of 47 choices out of 100, namely 

0.47
47

100 0.47 
 In the book, they calculate 0.47       proof 0.47 0. 

Define an infinite sequence of decimal digits and element must coincide with the 
decimal digits of  

0.47 lim lim
1

10 0 
 

 Definition. The Borel sets  of  are the smallest -algebra of  containing all the open 
intervals in . 

 Any interval is a Borel set (but not every Borel set is an interval), and the set of all Borel 
sets is a -algebra. 

 (all possible) Borel sets = Borel ring = Borel field = Borel -algebra 
 Theorem.  

 
∞ ,

the smallest ‐algebra containing
all the semi‐open intervals ,

 

 
 Intervals   →   algebra  spanned by intervals 

,  

 

 
 Definition. Outer Measure. Suppose  

  is an algebra on Ω 
  is -additive (i.e. countably additive) on  with Ω 1 

Then, the outer measure of any Ω is  

inf
 such that 

 

 
 For any set , we can show that .  

 First, we show  
Since , we can define  and  for all 2. Then,  
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Therefore,  is actually the inf over all possible sequences. 
inf  

 Second, we show that . 
We know (by assumption) that . Define  

 

Clearly,  is increasing, and  is also increasing to . 
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Recap 
 

  is an algebra on Ω 
  is -additive on  with Ω 1 
 Outer measure of Ω 

inf
 such that 

 

 We have shown that  
 

 Continue to prove that  
For any  such that , define  

 

Note that  is an increasing sequence, and  is increasing towards . 
We then have  

lim
∑

 

At the limit, 

 

This inequality is true for any sequence  with . Therefore, we can 
conclude that the inequality remains over the infimum 

inf
 such that 

      

 
 Theorem (admitted).  is the unique probability measure on Ω,  such that  

 
 

 Remark.  is defined for any Ω, but we cannot say that  is a probability measure 
on Ω, Ω . 
 This can be proved for the uniform probability measure on ,  

 
 The Lebesgue measure  on ,  is defined such that 

lim 2 ,  
where  is the uniform probability measure on ,  

,
length of ,

length of ,
length of ,

2  

  is a positive measure on ,  with convention 
∞ ∞,  

 Warning:  only if ∞ 
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 Similarly, lim lim  only if ∞ for any . 
 Counter-example: , ∞  where  

lim 2 , ∞ 
However, lim . This is not equal to lim 0. The disagreement 
results from the fact that we cannot find an  such that ∞ for . 
 

Multivariate extension  

∞,  

is the smallest -field containing all ∏ ,  
 
 

 Lebesgue measure on ,  
lim 2 , ,  
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Random Variable and Random Vectors (r.v.) 
 

 (informally) A random variable is a function of the outcome of a statistical experiment. 
 Example.  

 Ω = sample space of sequences of Bernoulli trials , … ,  with 0,1 . 
 Ω is endowed with a probability measure: 

Ω ∑ 1 ∑  
So the probability space is Ω, Ω , . 
• We don’t need the binomial coefficient here because we’re only considering one 

observation. 
 The random variable  is defined as 

Ω 0,1, … ,  

 

The associated probability is 
1  

where Ω  with Ω (i.e. Ω ). 
• The probability measure  induces another probability measure  on 0,1, … ,  

defined  by  

  Ω

 
 
 Ω

 

• Remark. We say that , .  is the probability distribution (or law) of 
r.v.  
 

 More general case. Consider a probability space Ω, , . 
 Define  

Ω  
with Ω  is not only countable part of  
 Ω  is the range (i.e. the minimum codomain). If Ω is countable, then the range of 

 should also be countable. 
  should not be sufficient to characterize  
• This is true because singletons have probability zero if  is in a continuum. 
• Example. Suppose , . Then, 0. So we cannot characterize . 

 Hopefully, we can use intervals. 

∞,

1 if  

if  

0 if  

,  

 We need to know that ∞,  makes sense, because 

∞, ∞,  



Econ 831 Math Econ  Oct 25, 2010 

 Page 28 of 61 

That is, I need to know that ∞,  for all . 
 

 Definition. Ω,  measurable space 
 Ω  is -measurable if  

∞,  
 Ω  is -measurable if 

∞,  

 The pre-image of Borel sets should belong to the -algebra. 
 Definition. If Ω, ,  is a probability space, any function Ω  which is -

measurable is called random variable. 
 

 Theorem. Suppose  
Ω ,    Ω        

 is -measurable if and only if . 
 Proof. If  is true. Then, it must be true, in particular, that  

∞, . 

Then, by definition  is -measurable. 
 
Suppose  is -measurable. That is, 

∞, . 

Need to show that  
. 

Recall that ∏ ∞, . We have to show that  
     

Or we need to show that  
    . 

 Comments. We know that  
    . 

But what is not clear is that 
. 

Note that the converse is clear, since 
 

because  

 ‐field

 

 Lemma 1. Suppose 
Ω Ω  

with  being a -field on Ω . Then,  is a -field on Ω. 
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 Lemma 2.  

. 
From the above discussion and Lemma 1, we have 

 
It remains to be proved that 

. 
Define  

. 
It can be shown (verify!) that  is a -field. 

     
   
  . 

 
 Conclusion. When we have a function Ω  with underlying probability space 

Ω, , , then we say that  is -measurable if and only if  
. 

 The smallest -field that makes  measurable is equal to the pre-image of the 
Borel -field. 

 Note.  
  is the smallest -field that makes  measurable. 
 Then, the probability distribution  of  is a probability measure on , : 

 
Hence,  is induced by . 

 When we say that 
,  

we mean  

,  
for any , , . But we don’t really care about the original Ω, , . 
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Distribution Function 
 

 For any r.v. Ω
,

 

 Probability distribution of  is , which is a probability measure on , , defined by 
 

and characterized by 
∞, ∞, . 

 We can use a cumulative distribution function to characterize  
0,1  

 
 Remark. Can we characterize ? 

1)  must be non-decreasing 
2) 0  and  1 
3)  is right-continuous 

lim
1

 

 
• Why  might not be left-continuous? 

lim
1

 

Thus,  is left-continuous at  if and only if 0. 
 

1
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Cumulative Distribution Function 
 

 0,1  such that  is 
 Non-decreasing 
 0 and 1 
 Right-continuous 

 
 Question: Is it sufficient to define  in order to characterize ? 

 Yes!  
 From  I can define a -additive function  on all the intervals 

,  
,  
, ∞ 1  

 
 Then, we can construct the outer measure   

 Unique  
 Coincides with  on the set of the intervals 

  is a probability measure on ,  
 

Density Function  
 

 Any real r.v.  with probability distribution characterized by   
  is continuous    0,  
  where both are real numbers 

 The interval ,  contains at least one rational number. We can therefore 
deduce that there are always at most a countable discontinuity points, i.e. points such 
that 0. 

 
• There are only at most countable number of ’s in the above diagram. 
 

 2 Extreme Cases 
  only has discontinuity points. 

1 

This is a discrete distribution. For example, Poisson distribution. 

1
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  is continuous. If  is differentiable on  with continuous derivative , then we need 
0. In addition, 

. 

When ∞, 

1. 

 
 
 
 

 (General Case) Definition.  is absolutely continuous if and only if  
0

 

 Remark.  may not be everywhere differentiable.  
 Remark.  is not unique, (it is defined up to a set of measure zero). 
 Absolutely continuous functions are those that can be differentiable almost everywhere.  

 
 Example. Exponential Distribution. 

1 ⁄ 1 ⁄   0
0   0 

  is continuous  
  is not differentiable at 0 

lim lim
1 ⁄ 1 1

lim
1 ⁄ 1

 
However, the derivative on the left is equal to zero. 
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Absolute Continuity 
 

 Definition.  is absolutely continuous if and only if 

0 . 

 
 Interpretation: When  is absolutely continuous, its probability distribution can be 

characterized in 2 ways: 
 The CDF  (with its 3 properties) 
 The PDF  with  

 0 
 1, where  is almost unique (cf Lebesgue measure zero) 

 
 Connection between  and : 

∆ , ∆
∆

 

lim
∆

∆
∆  

Also, for ∆  small enough, we can use the following approximation: 
∆ ∆  

 
 Gamma Distribution, Γ , , , 0. 

1
Γ

⁄  

 Question: Is  a PDF? 
1
Γ

⁄ 1
Γ

⁄  

I want Γ  to be such that  

Γ
1 ⁄  

Change of variable: ⁄ , so that 1⁄  

Γ  

This is the Gamma function. There is no closed (or explicit) form for Γ . It is only 
defined through the integral. 
 The Gamma function is a continuous analog of factorials. 

 
 Properties of the Gamma Function  

 If 1, then Γ 1 Γ 1  
 If , then Γ 1 ! 

 Proof. Use integration by parts: 

Γ  

Define  
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    1  

Apply integration by parts: 

Γ 1  

 Γ , , then 
    Γ , 1 Γ  

 Proof.  
⁄

Γ Γ
  ,

 

where ⁄ . 
 

 Multivariate Extension: 

, , , ,  

where  

, , , , 1
, ,  

1
, , , ,  

1
     

For small enough  and : 
    , ,  
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Lebesgue Integral and Mathematical Expectation 
 

 1st case:  is discrete r.v. 
  is finite or countable, and 1. 

  is like the Ω in previous lectures. 
 Assume we repeat  times the statistical experiment and we get: , , … ,  

 ’s represent the th experiment and they all follow the same distribution (iid) 
 For all , the sampling distribution is  

# of times that value  occurs
# of experiments relative frequency of  

where  is the number of times I observe the value . 
 Then, we can derive the mathematical (or population) expectation of  

1 1
if  applies

 

 Here we use  instead of  because we’re talking about the realizations, not the 
random variables. We could have used  instead, in which case we’ll be referring to 
the random variable before the experiments. 

 
 Example 1. We draw (with replacement)  balls from a box that contains a proportion of  

green balls. 
  : number of green balls picked during experiment #  
 Here , . Then, 

,
1

1 !
! ! 1

1 !
! 1 ! 1  

 Here 1 
 

 Example 2.  

! 1 ! !  

 CDF of Poisson distribution: 

; , !  

 2nd case :  absolutely continuous 
, ∆ ∆  
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, ∆ ∆  

  

well‐defined if | |

 

 
 Example. Γ ,  

1
Γ

⁄ 1
Γ 1

⁄

,

 

 This leads to the linearity of the expectation operation : 

 
 This property is not limited to the Gamma distribution. 
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Mathematical Expectation (cont’d) 
 

 Want to define 

or   

 

 We have shown for the cases  and . 
 We will see that  

Ω Identity function
  

for Ω . 
 

 1st case:  takes a finite number of values that are non-negative 

  

with . 
  is the pre-image of  . 

Integrate on both sides: 

Ω Ω
 

where 

Ω
1  

 This extends to the case where  takes a countable number of non-negative values. 
 

 2nd case:  is measurable non-negative r.v. such that  

lim 2   

We can use the monotone convergence theorem to conclude: 

lim  

In other words,  
lim lim  

 
 3rd case:  is measurable (real) r.v.  

 
where 

max , 0       and      max , 0  
Note that both  and  are non-negative. 

 
are well-defined and finite if and only if  
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∞
∞

    | | ∞     is integrable 
 Example. 

 
 

 Note 1. 1  → measure 

1  

 
 Note 2. Transfer Theorem: Suppose  where  is integrable, i.e. | | ∞ 

Ω
 

  is a r.v., and  is a r.v. generated by . Then, to find expectation of , we can either 
evaluate it using the underlying probability space of  (i.e. Ω ), or treating  as the 
probability that generates , and evaluate  using the distribution of . 

 
 

 

0 
0 

 
| | 
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Conditional Probability, Bayes’ Rule, and Independence 
 

 Definition.  and  are independent if and only if  
. 

 Note. If 0, then  and  are independent if and only if 

 

  is probable if 0 
 We can call  a probability measure with all the probability 1 put on . 
• The probability space associated with  is Ω, ,  

 

This formula describes the statistical model when 
• We draw from Ω 
• But we are sure that , because we have some additional information 

 Here  is a well-defined probability measure as long as 0 
•  is called the conditional probability distribution. 

|  

 
  and  are independent if and only if  

  has the same probability for  and |    
 |  

 
 Example 1.  represents duration (e.g. the Poisson process). 

 No memory property 
|      

 For instance,  is modeled using the exponential distribution 
 

 Given the Poisson, 
1 if  0

0 if  0
 

Then, the survival function is 

1 if  0
1 if  0

 

 
 Example 2. A partition of Ω has the following properties: 

 , for any  
 Ω 

Decompose Ω into a partition. 

Ω  

where 0 for all . Then, 
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|  

 Consider this: 
Ω  

| |  
 This is the key to define mixtures of distributions (cf. Wikipedia article) 
 Example. Γ  

1
Γ  

 This is unimodal. 
1

Γ  – 1  

0    1 
 Suppose Γ 1 Γ . 

1  
1  

 
 If ∑ , with ∑ 1 and 0, then ∑ , where .  
• Here ’s can be interpreted as PMF values (or probability of singletons). 
• This can extend to continuous cases, and the sum will be replaced by an integral. 
• This works for any distribution functions (CDF and PDF) 

 
 Note 3. The statement ,  are independent     is always true. 

 If 0, then any set  is independent of  
• Both sure and improbable sets are independent of anything, including themselves. 

 ,  are independent  
 and  are independent 

 and  are independent 
 and  are independent 

• This is the Independence Complement Theorem. 
• For proof, use the following as initial step: 

, ,
 

  

  

1 1
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 Note 4. , ,  are pairwise independent does NOT imply 
 

where  is independent of  
 

 Definition.  are mutually independent if and only if for all  with  finite, 

 

 
 Theorem (0-1 Law of Borel-Cantelli). Consider  sequence of events. 

1) If ∑ ∞, then 
lim sup 0 

2) If  ∑ ∞, and  are mutually independent, then, 
lim sup 1 

 Proof. Begin by recalling that  
lim sup  

has the interpretation that  happens infinitely many times. 
 
Proof of (1). Note that  is a decreasing sequence. Thus, 

lim sup lim lim 0 

The last equality is justified by the fact that each  is finite, and the sequence of 
partial sums is decreasing. 
 
Proof of (2).  

lim sup lim 1 lim  

Note that 

lim  

1 lim  

1 lim  

1 lim 1  
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To show that the second term is indeed equal to zero, 

1 exp exp  

The inequality is justified by 1 1 . Since  
 
 

 Independence of r.v.  
 Suppose we have Ω, , , and we have random variables , , …  

,  independent 
  , ,  
  ,  and  are independent 
    and    are independent  

 
 Definition. Ω, ,  with . Then,  are independent if and only if 

 are independent 
 

 Definition. Ω, ,  with  on , .  are independent if and only if  
  are independent 

 
 Theorem. Ω, ,  with  for all . If  

,      
Then,  are independent if and only if  are independent.  
 

 One easy case is when .  are independent if and only if 
, Ω, ,  are independent.  

 
 Case 1: discrete r.v. 1 with  finite or countable.  are independent 

if and only if  

 field defined by 
the values 

 independent   

  

stable by intersection

  independent 

  | | ∞,  

  is the support of . 
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Independence or r.v. 
 

 Theorem. Ω, ,  with  for all . If ,     , then 
 are independent if and only if  are independent. 

 2 discrete r.v. ,  are independent if and only if 
, , ,  

  , ,  
 

 Definition. Given Ω , , ,  
 

is the probability measure on ∏ Ω , , where  

, and finite Ω  

such that  

only a finite
number of

them are not 1 

 

 Note.  means the cross-product of collection of sets. 
 Ω , , Ω , , , , , , ,  , , , , . Then, 

Ω Ω , , , , , , ,  
, , …  

 Example. 
 

,     ,  
 with  and . 

 
 Theorem.  are independent if and only if  

Global CDF
 J  CDF

induced probability

 

 For us, the index set  is most of time finite, and sometimes countable (if we are dealing 
with sequences) 

 When ’s are independent, then the global CDF is equal to the product of individual CDF. 
 

 Case 2 (continuation from last class):  is a real-valued r.v. (extension to  is “easy) 

∞,
by  

∞,
stable by intersection

 

 are independent if and only if 
∞,  are independent 
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  finite ,  

   

Therefore, if  is finite, I only have to check this last equality on . 
 Random variables are independent if and only if their joint CDF is a product of their 

respective CDF’s. 
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Expectation and Independence 
 

 Definition. For a real r.v.  that is integrable, 

variance of not . .
not . .

 

 
 Proposition. Suppose 

∞    ∞     square integrable. 
Then, . 

 Square integrable means  exists. 
 Proof. By definition, 

  
2  

2  
 

 Note.  0    .  
• The inequality in this case is due to the convexity of the square function  
• Note that  is a number, not a random variable, so 0. 

 Note. Since  is r.v., we have to say 0 almost surely 
 

 Jensen Inequality: 
 If  is a concave function, then . 
 If  is a convex function, then . 

 
 Proposition. If  is square integrable, and  is a parameter, then 

mean squared error
   

 
measure of 
variability

bias squared
 

 Note.  does not have to be . 
 Note.  . 

 
2  

2 2  
 

 Note.   
 

 
 

 
 

 Property of variance. 
 Markov inequality 

| |
1

| |, 0 
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| | 1
1

| |, 0 

 
 Bienayme-Chebyshev 

| |
1

  
 Proof. 

 Proof of Markov inequality.  
| | | |,   

  | |
1

| |,   
Take expectation of this inequality: 

| |
1

| |     | |
1

| | 

• The key is to use the fact that the expectation of the indicator is the probability of 
the events.  

 Proof of Bienayme-Chebyshev. Same as in the Markov case. Just to square 
everything. 

| | | |     | | | |  
  | | | |  

  | |
1

 
 

 Special cases of the above two inequalities.  
 Pick | |. Then the Markov inequality is 

| |
| |

1
 

 Pick √  , where  is the standard deviation. The B-C inequality is 
| | 1

 

 Example. 2 
| |

2
1
4     2 ,   2

3
4 
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 Averaging reduces variability?  

 If , … ,  are  r.v.’s that are identically and distributed and independent (iid) , 
then 

1 1

 

1
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Variance (cont’d) 
 

 , … ,  is iid  

1 1
,  is a representative . . of  due to  

Consequently, 
1

 

is a consistent estimator of  if 
  

1 1
 

 0 
 

 Example. ,  is a consistent estimator of . 
 

 Definition.     0 

              
 Note. √  is the norm in the space of square-integrable r.v. 

  is a normed space (a Hilbert space with , ) 
 

 Property 1: 

    0 

 

    0 

Proof.  
. 

 
 Property 2:  

     
Proof. For any 0 

| |
1

  by  
convergence

 

 Note. Convergence in probability does not imply convergence in   
 Counter example: 
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Suppose  for all  with 1⁄ . If , then .  

| |
1

0 
1

∞ 

 
• In this example,  is a sequence of sets in the sample space. 
•  is almost equal to  except when . 

 Let . 
|  

 
 Definition. Suppose ,  are square integrable.  

 ,  
 ,  are uncorrelated if and only if , 0. 

 
 Theorem (Law of Large Numbers for uncorrelated r.v.). Consider  such that  

, ∞, , 0 

Then, .  
 This a strong LLN because it implies the weak LLN. 

 
 Characteristic Function.  

 Covariance of ,  does not characterize independence. The reason is that, knowing 
, , ,  only characterize the marginal distribution of  and , but not the 

joint distribution of  and . But we need the joint distribution to determine 
independence. 

 We need to know  for any , which is equivalent to knowing  
 Similarly,  for any ,  is equivalent to knowing , .   

 
 Definition. Given a r.v. Ω , the characteristic equation is  

exp i ,  
cos i sin  

This is bounded within the unit circle. 

,
 

,

1⁄  

1 1⁄
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Characteristic Function (cont’d) 
 

 Definition. The characteristic function of a r.v. Ω  is  
,  

 
 Note.  is a scalar. 
 Note. Knowing  on  is equivalent to  

 Knowing , where exp i  are a basis of function  
 Knowing  
 Knowing  

 
 Theorem. Consider 2 r.v. , .  

     
 

 Theorem. Given a one-dimensional real random variable, if | | ∞, then  is -times 
differentiable and  

0 i , 0, … ,  
When  is finite, we can switch the differentiation and expectation operation. 
 

 Example. Calculation of moments of a r.v. (one-dimensional) 
    i     0 i  

  i     0  
 This is an “efficient” way to get higher order moments 

 
 Another way is to use the moment generating function (MGF): 

 
This is the LaPlace transformation. 

column vector

   

row vector

    

 Note. ⁄  will give a column vector, ⁄  will give a row vector. 
 Note. Since  is a scalar, the order of differentiation does not matter, i.e. can 

differentiate w.r.t  and then . However, if  is a column vector, must 
differentiate w.r.t. a row vector . 

 For random vector  of dimension  
  

where 
,

 is a typical element of  .  

• On the main diagonal ( ), we have   
• Off the main diagonal ( ), we have  ,  

 



Econ 831 Math Econ  Nov 22, 2010 

 Page 51 of 61 

 Covariance of random vectors:  of dimension  and  of dimension  
,  

 With linear combination of  and , where  is  and  is ,  
,   ,   

 
 Example of using MGF on Poisson distribution. Let  

! !
exp 1  

Let exp 1 . Then, 
exp 1     0      

exp 1     0      
Therefore,  . 
 

 Theorem. 2 r.v. ,  are independent if and only if  
, , ,  

exp i i  
 

exp i  

 
 Theorem. Let ,  be independent random vectors of size . Then  

 
 

 Example (with Poisson distribution). , , and ,  are independent. 
 

 
exp 1 exp 1  

exp 1  
Therefore, . 
 

 Other ways to show this result. Let . 

,  

 

! !  
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!
!

! !  

!  
 

 
 Let , … ,  be  iid r.v. with ∑  and  Σ 

exp i  

exp i
1

 

exp
i

 

exp
i

⁄

, by independence 

, by identically distributed  
 This result is useful to understand the asymptotic behavior of : 

√ exp i √  

exp i
√

 

√
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Deriving the Normal Distribution (cont’d) 
 

 We have , … ,  iid with  and  Σ 

 
 

√ exp i √   

exp i
1

√
 

1
√

 

where the second equality is justified by: 

√ √
1

  

√  

1
√

 

and the third equality is justified by: 

exp
i

√
exp

i
√

 

exp
i

√

√

 

 
 So we have transformed the a function of a -dimensional vector  into a function of a real 

number 1 √⁄ . Let  
 

Taking the Taylor expansion of  

0 0 0
0 0

2! ⁄
 

 Substitute back the original function 

√
1

√
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1 0
1

√
0

1
2

1
 

1
Σ

2
1

 

exp ln 1
Σ

2
1

 

exp ln 1
Σ

2
1

 

exp
Σ

2  

 
 Conclusion. For any  iid with  and  Σ, 

√ exp
Σ

2  

 Question 1: What does it mean to have ? 
 Convergence in distribution 

 Question 2: What is  when exp ? 
 Normal r.v. 

 
 Definition. For r.v.  in  and   

      
 

 Theorem.     . 
 

 Recall that  
    . .         

 
 Example. , but  

| | | |  0 
where the equality is justified by 

, ,  
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 Convergence in distribution is about  as long as  is continuous. But 
 is not continuous. 

 
 Central Limit Theorem. Suppose ’s are iid with ∞ and ∞. 

√
    

0,1 . 
Let  

 

√ √⁄
,   

. 
Then,  

√
 

http://en.wikipedia.org/wiki/Central_limit_theorem#Proof 
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Convergence in Distribution 
 

 Definition. ,  are r.v. in  
     

 
 Theorem.     . 

 Lemma.      
Recall that  

    0, , , 0 | |  
Want to show that the distance of two characteristic functions goes to zero: 

 
 

 

| | | |
 

Note that in the second term, 
2 

  2  

  2 2  

where  
Ω | |  

For the first term, since  is continuous 
| |  

 
 In the end, what we have “shown” is  

 
 To prove convergence, separate the set into two: one that has probability zero, the other 

that doesn’t have probability zero, but get a bound for the thing that’s inside the intergral. 
 

 Theorem. Characterization of convergence in distribution: 
     

for any continuous and bounded function . 
 

 Theorem.  
     

for any  where  is continuous. 
 

 Example. Let  and . Consider .  
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    ∞,
1 if 

1

0 if 
1   

Thus,  
lim 1 if  0

0 if  0  
But  

∞, 1 if  0
0 if  0  

Therefore,  converges to  everywhere except at point 0. 

 Note. If 
. .

, then . 
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Normal Distribution 
 

 What we have done so far is to consider  
  &  Σ 

√         exp
Σ

2  

 
 Definition. The standard normal distribution 0,1  with density function 

1
√2

exp 2 ,  

 It is not easy to define in close form   
 Difficult to show that 1 

 
 

 Definition. Normal distribution ,  where  and 0, ∞  
,      

  Φ  
where 0,1 , and  

Φ
1

√2
⁄  

 
 Moment generating function 

exp  
exp  

exp exp  
exp  
exp  

Here,  
exp  

1
√2

⁄  

1
√2

 

1
√2
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 Moments. 

exp 2       

 

exp 2      

Therefore,  
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-Dimensional Normal Distribution 
 

 Definition. Let  be a random vector in . 
 is a normal vector    . 

 
 If  and Σ. We have  

, Σ . 

1 exp 1 1 2 exp
Σ

2  

 
 Thus,  

, Σ     exp
Σ

2     exp i
Σ

2  

 
 We can also show that  

exp 1
2 Σ

2 ⁄ det Σ ⁄  

as long as det Σ 0. 
 

 In dimension 1, we have: 
1

√2
exp 2 ,  

 
 Recall that: If  iid with  and Σ, then  

√    with   exp
Σ

2  

Thus, 0, Σ . 
 

 Central Limit Theorem.  
 Let  be iid with  and Σ. Then,  

√ 0, Σ    and   ,
Σ

 
 

 Consider 2 r.v. ,  

, Σ     exp i
1
2 Σ  

 
Suppose ,  are not correlated. This is true if and only if 

, 0    Σ Σ 0
0 Σ  

where Σ  and Σ . Then,  

Σ Σ Σ  
Then, 
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exp i
Σ
2 exp i

Σ
2  

where  
 

This implies that ,  are independent. 
 
In general,  

    , 0    ,  are independent 
 

 Transformation of r.v. 
 Let  be r.v. in .  

 
where  is bijective. 
 

 

 

| |  

Here we have 
 

 
 

 


